Tag Archives: American National Standards Institute

Things You Want to See On a Building Proposal

Things You Want to See on a Building Proposal/Contract

Maybe you (as a soon to be building owner, building contractor or provider) are satisfied with being overly vague when it comes to what you are buying or selling. From a contractor/provider standpoint, this gives you lots of leeway to add ‘extra dealer margin’ by providing minimal (or less than minimal) components to unsuspecting buyers.

Now, my employer happens to offer a “price match guarantee” for any comparable building package. If I had a dollar for every quote from a competitor where it was impossible to even determine what was being proposed to be provided, I would be sitting in a beach chair along an ocean, not writing this article!

Today I am going to address a few highlights, if you are pondering a building investment, you will want to pay close attention…provided getting best investment for your money is important.

Things like building dimensions (width, length, eave height and roof slope) as well as roof style (gable, single slope, monitor, gambrel, dual slope, etc.) might seem to be no brainers, however I find even some of these certainly important features to be overlooked!

While there does exist an actual ANSI (American National Standards Institute) definition of Eave Height – most builders and vendors are unawares or just plain choose not to use it. Somewhere your agreement should spell out what is proposed or provided so all have a clear understanding. (Please read more here: https://www.hansenpolebuildings.com/2012/03/eave_height/)

Will this building be fully enclosed, partially enclosed or merely a roof? It makes a difference in wind design, so should be clearly delineated.

FEATURES

This is not meant to be a comprehensive list, but is to provide an idea as to how extensive it should be.

Thickness (gauge) of steel roofing and siding, as well as warranty AND substrate should be called out. Caution here as IRC (International Residential Code) Table R905.10.3(2) requires a minimum of AZ 50 for 55% aluminum-zinc-alloy-coated steel (Galvalume) or G-90 for Galvanized steel. These same requirements can be found in IBC (International Building Code) Table 1507.4.3(2). Lesser coatings can only be used for “U” buildings. Will there be wainscot, and if so will there be trim between it and upper wall panels?

How will roof steel condensation be controlled? Not addressing this now will cause challenges later. Integrated Condensation Control (Dripstop or Condenstop), Reflective Radiant Barrier (aka Bubble – and it is NOT insulation), Metal Building Insulation (vinyl faced fiberglass), Sheathing (OSB or plywood) with 30# or heavier felt or a synthetic ice and water shield? Tyvek or other similar housewraps (Weather Resistant Barriers) are not effective for condensation control.

How will any dead attic spaces be ventilated? Soffits, gable, ridge?

If other materials are to be used for roofing and/or siding, specifics as to thickness, quality and warranty should be clearly delineated.

Overhangs – open (no soffit) or enclosed (with soffit). Length of overhangs. Soffit material to be used (vinyl, steel, aluminum) as well as vented or non-vented.

Any overhead sectional or roll-up (coil) doors should be appropriately wind rated. Residential or commercial doors? Smooth faced, long panel or short panel? And glass, and if so, inserts? Specifics as to any manufacturer’s stated R values, thickness of steel, interior backers, track options (standard, low headroom, high lift or with run of roof), color, finish painted or primed only, vinyl weather seals, steel trims on jambs,  openers and operators should be called out.

Entry door width and heights, is door wood, steel, aluminum, vinyl covered, fiberglass? Jambs wood, steel, aluminum, vinyl covered wood? Doors and jambs finish painted or primed only? Crossbucks? Raised Panel? Glass? Wind rated? R value? Keyed lockset, dead bolts?

Windows with dimensions, type of frame material (aluminum, vinyl, composite, etc.), type (sliding, single hung, double hung, fixed, casement, etc.). Glazing (single, double or triple pane, tempered or non-tempered glass). Color of frame. Integrated J channels? Screens? Gas filled? U-factor and SHGC.

Wall framing (girts) external or bookshelf? External girts rarely meet Code deflection requirements and framing will have to be added to create an insulation cavity or apply interior finishes.

Trusses designed to support a ceiling load? If for sheetrock, a 10 psf (pounds per square foot) bottom chord dead load is required.

Future Building Owners – if it is not specifically called out for, do not assume you are getting it. Building providers and contractors – if you are providing a feature and do not call it out, you are doing a poor job of selling yourself.

Our next article will delve into “Code” design requirements – don’t miss out!

A Contractor for Your New Barndominium

A Contractor for Your Barndominium (Part I)

I have done my best to be a member of any barndominium, shouse (shop/house) or post frame house discussion group on Facebook with any sort of activity. If I had a quarter for every post from people looking for a building contractor, I could head to a casino and play quarter slots for days!

In my humble opinion, looking for a general contractor before one owns land and has settled on a custom designed floor plan to best fit their property, their wants and needs, is entirely foolhardy.

My previous writings have espoused how to thoroughly vet a contractor. I am going to wax poetic here and give a few pointers few of you will follow (although all of you should).

Your work starts before you sign a contract.

  • ASSUME YOUR PROJECT WILL END IN COURT
  • ASSUME YOUR CONTRACTOR IS UNTRUTHFUL
  • ASSUME YOUR PROJECT WILL BE MORE EXPENSIVE
  • ASSUME YOUR PROJECT WILL TAKE LONGER THAN EXPECTED

Failure to accept these four statements will set you up for grave disappointment.

Don’t let price or warranty be your only guide.

Many building owners subscribe to a concept of obtaining three bids and if they all appear to be roughly equal, taking the lowest bidder. This is simply not always a good practice, especially if there is a large disparity between prices. Be extremely cautious of prices substantially lower than others. It can mean a mistake has been made, or something is being left out. Compare all specified items carefully for discrepancies. Do not assume everyone has included all items (this happens frequently). Low bid Contractor may be planning on shortcuts in quality, making you ultimate loser.

Be wary of unusually long warranties as an enticement. It is reasonable to expect a year or two of warranty for labor.

Read contract thoroughly, including all terms and conditions.

Keep in mind a good contract is written to provide clear communication between the two parties.  It also protects both parties, and should never be “one sided”.  From my years as a general contractor, a well thought and spelled out contract (in writing) made for smoothest projects. 

Before agreeing to any work (as well as making any payment), require a written proposal describing in plain language what work will be done. Do not sign a contract you do not fully understand. If anything makes little or no sense, ask for a written explanation. Still feel dazed and confused, or not getting what you feel are straight answers? Pay a one-time fee so a lawyer can walk you through what, exactly it says and alert you to vague language. Terms such as “Industry Standard” have no real definition.

A total price should be as inclusive as possible. Any unforeseeable work or unit prices should be clearly addressed (like what happens if holes are difficult to dig). Maintain all paperwork, plans and permits when job is done, for future reference.

Familiarize yourself with contract terms.

Contractor’s proposals and contracts should contain specific terms and conditions. As with any contract, such terms spell out obligations of both parties, and should be read carefully. Be wary of extremely short or vaguely worded contracts. A well written contract should address all possibilities and may very well take more than one page. Payment terms may vary, however most will require payment in full upon completion of all work. Do not pay for all work until the Contractor has finished the job.

A statement regarding compliance with applicable Building Codes should be included. If contractor is doing building permit acquisition, it should be stated in writing and a copy of the permit should be provided prior to work starting.

Standards for workmanship should be clearly specified. For post-frame buildings this would be Construction Tolerance Standards for Post-Frame Buildings (ASAE Paper 984002) and Metal Panel and Trim Installation Tolerances (ASAE Paper 054117). Depending upon the scope of work, other standards may apply such as ACI (American Concrete Institute) 318, ACI Concrete Manual and APA guidelines (American Plywood Association).

Tune in tomorrow for Part II

True Double Trusses

True Double Trusses

ASABE (American Society of Agricultural and Biological Engineers) published ANSI/ASABE S618 “Post Frame Building System Nomenclature” in December 2010. For those who are unfamiliar ANSI stands for American National Standards Institute (www.ansi.org). ANSI is a private non-profit organization overseeing development of voluntary consensus standards for United States products, services, systems and personnel.

In ANSI/ASABE S618, a Metal plated connected wood truss would be described as, “A truss composed of wood members joined with metal connector plates (also known as truss plates). Metal connector plates (MCP) are light-gauge, toothed steel plates. The most common type of light wood truss.” Ganged wood trusses are defined as, “A truss designed to be installed as an assembly of two or more individual light wood trusses fastened together to act as one.”

Reader RON in FORT BENTON writes: I built a 24 x 36 x 10 pole building from a kit 30 yrs ago. And I have had a 20 x 28 x14 built by local professionals about 8 yrs ago. They each have 12 or 14 foot distances between posts. The trusses are the regular double 2 x 6 construction with 1 on opposite sides of the posts with blocking between them at the bottom. The side girts have been 2  2x6s configured in the L shape. I am not sure what you call that. Now looking at examples of kits, they seem to use (double?) 2×4 construction for the truss. Has there been a big change or am I just missing something. I like the 2×6 approach and am not sure how much difference it makes in final costs. I am looking into a 48x36x? monitor type building in, at times, very windy location. Thanks.”

Even though some very high grades of 2×4 lumber are available to metal plated connected wood truss manufacturers (such as 2850msr), only in very small spans and light loads would they work for top chords of double trusses spaced upon 12 or 14 foot centers. For bottom chords, it might be possible to get to 30 or 36 foot width spans, provided loads were light.

Learn about Machine Rated (MSR) lumber here: https://www.hansenpolebuildings.com/2012/12/machine-graded-lumber/.

For Hansen Pole Buildings, any time we are using a “real” double (more specifically ganged) truss system, we specify top chords to be a minimum of 2×6, regardless of loads. I say “real” because placing a single truss along each side of a column (as you have described) is not a double truss. They are two single trusses, acting independently from each other. A true double truss system, such as used by Hansen Pole Buildings, features trusses physically attached face-to-face by means of mechanical connectors (e.g. nails, bolts, etc.). This allows for two members to actually load share, reducing probabilities of one weak single truss failing and pulling a roof system down with it.