Tag Archives: CDX plywood

Stucco for My Post Frame Home

Stucco For My Post Frame Home

Reader SHAWN in WASHINGTON writes:

“I’m about to build a 110’x 50′ pole frame house using sono tube piers and wet set brackets. I am wanting to use the 1 coat (lighter weight) stucco on full exterior my question/ concern is what options do Ii have for my grade board contacting earth and also the transition of bottom of stucco on face of grade board? I have so much money in my land that I was really trying to save by not pouring a footer. Galvanized metal grade board? Wrap bottom and face of grade board with a custom j metal trim? Want it to be appealing to the eye with stucco stopping a few inches above ground level and just a few inches of grade board showing. Just want my grade board to last longer than 30-40 years since I will have roughly $600,000 in my house. My initial house design, but have changed it to stucco only with no rock more like other photo.”


Mike the Pole Barn Guru says:

Of concern with your use of stucco, in general, is limiting wall deflection to L/360. This can be accomplished, however it will often require larger dimension and/or higher graded wall columns (often glulaminated). Wall girts will need to be bookshelf style. In order to confirm deflection limits are indeed adequate, your post frame home’s structural plans should only be designed by a Registered Professional Engineer. Failure to meet this high degree of frame stiffness will result in failure of your stucco.

Successful stucco installation obviously requires a solid substrate (typically OSB or plywood). Either of these must be no closer to grade than six inches, unless properly pressure preservative treated (or a material otherwise impervious to decay). You might want to consider sheathing lower four feet of your wall with Foundation Rated (FDN) CDX plywood or cement board, so you can run it even down to grade, if desired.

Your grade board (splash plank) can be special ordered as UC-4B pressure treated. This level of treatment is good in the ground for longer than anyone alive on our planet to witness it failing. Our clients, who have been using stucco, have merely finished the bottom of it with a weep screed and called it a day. In all reality, no one except you is ever going to look at or notice how this is detailed.

Insulating an Existing Pole Barn

Insulating an Existing Pole Barn When Things Started Wrong

Reader TOM writes:

“Mike,  I have an existing pole barn (6×6 post with 2’ on center girts ) that has a 4” concrete floor with 10 mil plastic under it. The side walls have 1” XPS insulation on the outside of girt then steel siding with no wrap or barrier. My thought is put Tyvek on inside of girt ( facing same direction as if on outside application ) then put inch and a half XPS DOW insulation against that ( because there’s two bunks already there) then 2×4 frame with batten insulation between them, then 6mil or heavier vapor barrier then OSB. The floor has PEX tubing in it but not hooked up. Is this a proper install?  Also I will have to have an engineer check the BCDL as I want to put OSB on the ceiling but would like to know how to insulate the ceiling. There is a one foot fully vented overhang with a ridge vent also. Thank You for the info in advance. 

Mike the Pole Barn Guru advises:

I am concerned about your building having an inch of XPS insulation between girts and siding. This allows screw shanks to flex, potentially creating slotting under screw heads and excessive deformation can result in your building cladding’s shear strength being compromised and (under extreme circumstances) racking enough to create a failure. I would feel much more comfortable if you were to add 7/16″ OSB or 1/2″ CDX plywood to the inside of girts in bays on each side of corner columns from splash plank to eave girt.

Moving forward….

Your external XPS is now acting as a vapor barrier (or close to it). Any exposed to inside seams should be taped. Do not put Tyvek on the inside of the girts, as this would allow any moisture in assembly to be trapped between it and XPS. Unless you already own a pile of 1-1/2″ Dow insulation, skip it and instead fill the balance of the wall cavity with rock wool or stone wool unfaced batts. Do not place a vapor barrier on the inside or seal OSB on the inside of the wall. Walls will now ‘dry’ to inside.

Provided your trusses are capable of supporting a ceiling, blow in fiberglass above your ceiling finish of choice. Make sure to allow at least an inch of air space above insulation at eaves so you get proper air intake from vented soffits. Unless you are very close to Canada and have at least 8000 heating degree days, do not add a vapor barrier at ceiling level.

Nanoo Nanoo

Nanoo Nanoo

In today’s riveting episode of Pole Barn Guru blogs we are actually going to discuss nanograms, not Robin Williams’ character Mork’s salutation from a late 70’s sitcom.

Reader KEN from INDIAN RIVER didn’t plan his pole (post frame) building with a WRB (Weather Resistant Barrier like Tyvek) and now writes:

“Mr. Pole Building Guru.  I installed a 30 x 56 pole building without Tyvek under metal  I now want to insulate With 1.5″ foam  board between purlin then insulate with unfaced fiberglass then install OSB for walls. I don’t want to create two vapor barriers which I think the foam would create one then the OSB.  not quite sure how to insulate for best results any suggestions?”


Mike the Pole Barn Guru responds:

Provided you are able to completely air seal your foam boards between wall girts, they may act as an effective vapor barrier. Personally I would opt for two inches of closed cell spray foam rather than foam boards. In either case, this means you need to dry your wall to the inside.

Whether or not a material qualifies as a vapor barrier is determined by how much moisture passes through it, and it is given a rating. Any material allowing less than 60NG (nanograms) of moisture to pass through under specific conditions, is considered a type nine residential vapor barrier. A nanogram happens to be fairly small – it is one billionth of a gram!

Including a vapor control measure on your wall insulation’s warm side insulation is essential for preventing moisture movement through walls in winter, and ensuing damage coming with it. In summer however, with a combination of hot, humid days and air-conditioned, dry interiors, vapor drive reverses and can force moist air inwards through your insulation where it can condense on a cold and impermeable vapor barrier.

Ideally we’d have no vapor barrier in summer; but short of this we should at least have one allowing as much drying to interior as possible without sacrificing its winter performance. So the close your vapor barrier is to 60NG, the better. For  context it should be noted polyethylene (Visqueen) is rated at 3.4NG.

Rated at 44NG (2/3rds of a perm), 7/16 inch OSB sheathing can be a reasonably good vapor barrier, however you may want to consider instead using 3/8″ CDX plywood as it has a 57 NG rating. Do not seal it (paint is a seal) or tape seams and your wall is probably okay.

P.S. You long time readers have probably been wondering how I would incorporate “Nanoo Nanoo” into an article. Well, now you know!