Tag Archives: concrete apron

A Post Frame House Photo

A Post Frame House Photo – and More

Post frame buildings are amazing, after four decades in this industry I am still amazed at what can be accomplished with them. We are just now barely scuffing surfaces of a burgeoning residential housing market!

I will begin with a disclaimer, this is not a Hansen Pole Building. In fact, I am totally unsure of what this photo’s source is. Here we are using it merely as a teaching moment.

There is a less than lovely pile of wood filling an entire corner of this photo. My framing contractor father and uncles would have had a piece of me for ever having a waste pile like this on a jobsite. My first summer working for them as a teenager, we built two three story wood framed commercial buildings with a courtyard between. My primary function was as “cutoff” man. I cut to length every stud, trimmer, sill, header, etc., for this entire project. Having been properly indoctrinated to not waste anything, when our project was completed, my wood scrap pile would not have covered a card table.

Moving forward….

From experience it is far easier to square a post frame building up when the roof is framed and sheeted before any walls are framed.

Some things I would have done different with this build:

Note level at the base of steel siding on the endwall to the left of the entry door. Bottom of the siding is lower than the bottom of the door. This precludes any ability to pour a concrete apron outside of this door without pouring up against siding (not a good choice as it leads to premature degradation of siding due to water trapped between concrete and steel), or creating a step down. Lowering this apron (landing or walkway) could result in a top surface lower than surrounding grade resulting in ice or snow build ups if in a cool climate.

Wall girts have been applied “barn style” flat on column exteriors. This building might be in a region where design wind speeds are low enough to allow these girts to meet Building Code deflection criteria. However in order to insulate and finish the interior either studwalls will need to be framed between columns, or an interior set of girts added. It would have been far easier to have accomplished all of this using bookshelf style girts every two feet.

Diagonal braces have been framed in behind wall girts. These are probably unnecessary had diaphragm strength of steel skin been factored in by a Registered Professional Engineer. So why might they be a problem? If framing in a studwall between columns, these braces will need to be worked around.

Maybe exterior walls are going to have closed cell spray foam applied directly to the inside of wall steel. If not, then a Weather Resistant Barrier should have been placed between wall girts and siding.

This building is a residence. Unless the roof deck underside is going to be insulated and attic space conditioned, my educated guess is some form of attic insulation will be blown in over a ceiling. In order to do this right, roof trusses should have been designed with a raised heel, to allow for full thickness of attic insulation across exterior walls.

All-in-all it does not appear to be overtly a bad building, but for little or no added investment it could have been so much better!

Top of Barndominium Slab

Where Should the Top of Barndominium Slab Be?

Loyal reader DANIEL in OWENSVILLE writes:

“Mike,

First I want to say thanks for all that I have learned from your Blog. I am confused on a couple of points you made concerning floor height…

“Occasionally we have clients who ask why they can’t run the concrete to the top of the splash plank, as they want to use the splash plank to “screed” the concrete slab top. Using any other measure for the concrete slab top, will result in wall steel and doors not properly fitting, as well as possible interior clear height loss.”

This really is not answering the question… the building could be designed with the door openings, ceiling heights, etc. to compensate for a higher floor height/thicker floor. Request it in the design and build it to the plan.

Also, “Your new Hansen Pole Building has as the bottom horizontal framing member, connecting pressure treated column to pressure treated column, is a pressure preservative treated splash plank. The building design is such so the top of any concrete floor is set at 3-1/2″ above the bottom of the splash plank.” and, In another post you stated the splash plank rests on the finished grade. That would put the finished concrete floor only 3-1/2″ above the finished grade. And below the weep screed, rat guard, any water being shed on the outside of the sheathing, and what codes require for an occupied building.

Please explain if there is any “real” reason for not raising the interior floor to 6 inches or more above grade (as is required for a house)?”

Daniel ~

Thank you for your kind words. Certainly any building could be designed for door openings, ceiling heights, etc., to be adjusted for top of slab on grade to be at any point. This would entail leaving greater amounts of splash plank exposed on exterior beneath siding in order to prevent concrete aprons, sidewalks, driveways, etc., from being poured up against wall steel. Some people find great amounts of splash plank being exposed to be aesthetically unpleasant however. By being consistent in design, it also allows for one set of assembly instructions to be used – rather than having to rely upon making adjustments for whatever custom situation individuals (or their builders) deemed their particular case.

I went back and read through both IRC (International Residential Code) and IBC (International Building Code) codes and there is no requirement for an interior concrete floor to be at six inches or more above grade for an occupied building or a house.

From 2018 IRC R506.1 “Concrete slab-on-ground floors shall be designed and constructed in accordance with the provisions of this section or ACI 332. Floors shall be a minimum 3-1/2 inches thick.”

From 2018 IBC 1907.1 “The thickness of concrete floor slabs supported directly on the ground shall not be less than 3-1/2”

Both of these imply top of concrete floor at 3-1/2″ above ground (grade) is totally acceptable. 

Having been involved in tens of thousands of post frame buildings successfully engineer designed and approved in structural plan reviews leads me to believe how we are doing it both works and is code conforming.

For extended reading on this subject: https://www.hansenpolebuildings.com/2016/05/concrete-floor/ and https://www.hansenpolebuildings.com/2012/02/where-is-the-top-of-the-concrete-slab/.

Concrete Apron Around a Pole Barn

Concrete Apron Around A Pole Barn

My lovely bride and I live in a post frame (pole barn) home along South Dakota’s Lake Traverse. Long time loyal readers of this column have seen photos of it more than once. For those who have missed out, our home was featured on NFBA’s (National Frame Building Association) Post-Frame Building Design Manual (second edition) cover: https://www.hansenpolebuildings.com/2015/03/post-frame-building-3/

Along our home’s west eave side are a steel-sectional overhead garage door as well as two entry (person) doors. A three foot width concrete apron has been poured along most of this wall, from pressure preservative treated splash plank (skirt board) out, serving as a sidewalk. In front of entry doors, sidewalk width at three feet was also adequate to meet with building code requirements for egress door landings https://www.hansenpolebuildings.com/2015/02/landings/ .

Only issue I have had with our sidewalk – finisher neglected to slope finished concrete surface away from building wall! While it may appear self-evident to have had a slope, remember our average contractor’s level of education.

Reader JOE in NORTH PLATTE has been pondering a concrete apron around a future building. Joe writes:
“Hello pole barn guru. We are planning to build a 50×80 insulated ag shop. We are contemplating pouring a 24” apron around the entire building. The cement would be sloped away from the building so water would run away. Do you think this is a good idea for some added protection from deterioration of the skirt board? I don’t know if the cement against the skirt board would help protect the skirt board? Or would the cement against the skirt board hold moisture and be more likely to rot? It probably won’t be a problem in my lifetime but would appreciate your opinion.”

(NOTE: “cement” as used by Joe in paragraph above should more appropriately be “concrete”)

Pole Barn Guru writes:
Sounds like an expensive proposition. I would only do it if you either like this look, or were going to increase width to three feet so it could be a functional sidewalk. If your concern would be skirt board (splash plank) longevity you might be better off and money ahead to invest in Plasti-skirts (https://www.hansenpolebuildings.com/2017/08/plasti-skirt/) and can be provided along with your post frame building kit materials.