Tag Archives: concrete slab on grade

Stretching Stick Frame Construction

Post frame (pole building) construction is popular due to efficiencies of materials (ability to do more with less) and speed of construction.

Reader RAYMOND in BARLING is trying to find a way to make stick framing cheaper, he writes:

“24×64 pole barn in question. 4 pitch.  I am just comparing the cost of alternate designs.

Using 2×6 rafters with purlins across top for metal. Can I part from the standard 24 OC of rafters and expand to 30 OC (since more support from purlins)?

Furthermore, is it possible to use 30 OC studs all around, instead of poles (since more support from purlins on walls)

I would really appreciate your wisdom.

Thanks!!”

Mike the Pole Barn Guru says:

Let’s begin with, “since more support from purlins on walls”. Studs in stick framed walls will not resist wind loads perpendicular to a wall any better due to lateral support from purlins (actually girts) installed horizontally.

Your rafters are also going to be unable to support greater roof loads due to purlins being attached.

Building Codes have prescriptive requirements limiting what can and cannot be done with conventional (stud wall) framing, without having to have a fully engineered building. This would include studs and rafters being no greater than 24 inches on center. They also preclude wall heights of over 12 feet (you did not mention any heights however it should be kept in mind).

International Residential Code (IRC) Table R8702.4.1(1) provides rafter spans for common lumber species with a roof live load of 20 psf (this happens to be Code minimum whether snow is present or not). Being as you are in Arkansas, we will assume the minimum load as well as no ceiling being attached to rafters. With rafters 24 inches on center your rafters would need to be 2×8 #2 Southern Pine at a minimum. You would also need to provide ceiling joists or rafter ties to resist outward push of rafters on bearing walls. In order to get full value from rafters, ratio of rafter ties measured vertically above the top of stud walls to the height of roof ridge would need to be 1/7.5 or less. At a 4/12 slope ridge height would be 55.64″ meaning rafter ties could be located no more than 7-3/8″ above top of stud wall, so plan on then being at least 20 feet in length. A ridge board must also be provided as well as a collar tie, gusset plate or ridge strap (please refer to IRC R802.4.2).

Stud walls also mean you would need to make provisions for structural headers above any opening in any load bearing exterior wall. With post frame construction openings can be placed between columns in exterior walls, eliminating structural headers (this assumes trusses are placed aligned with wall columns with roof purlins on edge).

For stud wall construction, your concrete slab on grade will need to have an appropriately thickened edge in order to support weight of walls, or a continuous footing and foundation will need to be poured.

Ultimately post frame construction, not stick wall construction, is most probably going to be Raymond’s best route to go when considering investment and ease of construction.

Top of Barndominium Slab

Where Should the Top of Barndominium Slab Be?

Loyal reader DANIEL in OWENSVILLE writes:

“Mike,

First I want to say thanks for all that I have learned from your Blog. I am confused on a couple of points you made concerning floor height…

“Occasionally we have clients who ask why they can’t run the concrete to the top of the splash plank, as they want to use the splash plank to “screed” the concrete slab top. Using any other measure for the concrete slab top, will result in wall steel and doors not properly fitting, as well as possible interior clear height loss.”

This really is not answering the question… the building could be designed with the door openings, ceiling heights, etc. to compensate for a higher floor height/thicker floor. Request it in the design and build it to the plan.

Also, “Your new Hansen Pole Building has as the bottom horizontal framing member, connecting pressure treated column to pressure treated column, is a pressure preservative treated splash plank. The building design is such so the top of any concrete floor is set at 3-1/2″ above the bottom of the splash plank.” and, In another post you stated the splash plank rests on the finished grade. That would put the finished concrete floor only 3-1/2″ above the finished grade. And below the weep screed, rat guard, any water being shed on the outside of the sheathing, and what codes require for an occupied building.

Please explain if there is any “real” reason for not raising the interior floor to 6 inches or more above grade (as is required for a house)?”

Daniel ~

Thank you for your kind words. Certainly any building could be designed for door openings, ceiling heights, etc., to be adjusted for top of slab on grade to be at any point. This would entail leaving greater amounts of splash plank exposed on exterior beneath siding in order to prevent concrete aprons, sidewalks, driveways, etc., from being poured up against wall steel. Some people find great amounts of splash plank being exposed to be aesthetically unpleasant however. By being consistent in design, it also allows for one set of assembly instructions to be used – rather than having to rely upon making adjustments for whatever custom situation individuals (or their builders) deemed their particular case.

I went back and read through both IRC (International Residential Code) and IBC (International Building Code) codes and there is no requirement for an interior concrete floor to be at six inches or more above grade for an occupied building or a house.

From 2018 IRC R506.1 “Concrete slab-on-ground floors shall be designed and constructed in accordance with the provisions of this section or ACI 332. Floors shall be a minimum 3-1/2 inches thick.”

From 2018 IBC 1907.1 “The thickness of concrete floor slabs supported directly on the ground shall not be less than 3-1/2”

Both of these imply top of concrete floor at 3-1/2″ above ground (grade) is totally acceptable. 

Having been involved in tens of thousands of post frame buildings successfully engineer designed and approved in structural plan reviews leads me to believe how we are doing it both works and is code conforming.

For extended reading on this subject: https://www.hansenpolebuildings.com/2016/05/concrete-floor/ and https://www.hansenpolebuildings.com/2012/02/where-is-the-top-of-the-concrete-slab/.

Importance of Constrained Posts

Importance of Constrained Posts

In structural design of post frame (pole) buildings, an ability to transfer wind shear loads from roof to endwalls to ground becomes a key to cost effective design success. When sidewall columns are in a properly constrained condition (usually by attachment to a concrete slab-on-grade) shear forces are reduced by 25%. This reduction can result in smaller dimension sidewall columns, as well as a reduction or elimination of need for OSB (Oriented Strand Board) or plywood reinforced roof or endwall planes.

These savings are most often apparent in buildings with a far greater length than width, are fairly tall (especially if narrow) and/or are in high wind regions. In some cases savings from constraining sidewall columns can overcome a significant amount of costs to pour a slab-on-grade!

Savings – I now have your attention. Now I will explain constrained.

Excerpted from National Frame Building Association Post-Frame Building Design Manual (January 2015):

“5.2.4 Foundation Constraint

If a post or pier foundation is not restrained from moving horizontally at or just above the ground surface it is said to be non-constrained. Conversely, if a post or pier foundation pushes against (or is attached to) an “immovable” structural element such that the lateral displacement at some point at or just above the ground surface is essentially equal to zero, the foundation is said to be constrained. An example of a constrained post or pier foundation is one that bears against a concrete slab-on-grade.

A single post can be both constrained or non-constrained, depending on the load case. Using the previous example of a concrete slab-on-grade, and assuming that the post is not attached to the slab, if the wind loading was such that the post was pushing on the slab, the post would be considered constrained. However, if the wind were blowing in the opposite direction, the post would not be supported by the slab; hence, the post would be analyzed for that load case as non-constrained.”

In simple terms, attach sidewall columns to a concrete slab-on-grade to prevent ground surface movement. Rebar hairpins can be an effective method to achieve a constrained condition, and can be read more about here: https://www.hansenpolebuildings.com/2016/10/rebar-hairpins/.