Tag Archives: drywall

Barndominium Bookshelf Wall Girt Ghosting

Barndominium Bookshelf Wall Girt Ghosting

Are you starting to see bookshelf wall girts through your barndominium’s gypsum wallboard (drywall)? If so, you are witnessing a phenomenon called wall ghosting.

It occurs when condensation interacts with trapped dust and can have a couple of different causes. It results in shadowy-looking lines on your walls or ceilings.

If you’ve been wondering, ‘why do I see wall girts through drywall?’ Let’s look at all the answers. 

Wall ghosting is a result of trapped dust, poor circulation, and poor insulation.

In inadequately insulated walls, cold will come through, mainly at bookshelf wall girts. If barndominium inside is relatively warm, this causes bookshelf wall girts to collect moisture where they meet drywall. This moisture then traps dirt and dust circulating throughout interior air, resulting in wall ghosting.

When you see these shadowy lines, you are actually seeing trapped dust particles collecting in front of bookshelf wall girts. And unfortunately, since dust is behind wall finish, you can’t just wipe it down.

Biggest thing you can do to stop ghosting on your walls is to find and fix cold air sources. This can include sealing all exterior surfaces, as well as sealing doors and windows. 

If ghosting results from poor or no insulation, having your walls insulated may be your best bet.

Other things you can do include replacing your furnace filters regularly, making sure any indoor stoves are adequately vented, and keeping indoor humidity low during cold months.

Once you’ve fixed the problem source, you can get rid of these dark shadow lines by allowing drywall to completely dry out, cleaning it, and then using a high-quality primer and paint. 

If you don’t fix the source, these lines will eventually show through again, even if you prime and paint.

Wall ghosting isn’t dangerous but can be a sign of poor air quality, inadequate insulation, or a combination of both. However, since ghosting results from dust build-up and not mold, it’s not usually a significant health risk.

To clean ghosting on walls, you first have to identify and fix problems. If you don’t, no cleaning method will work. However, if you have fixed root causes of your wall ghosting, here’s what to do:

  • Wipe down walls with an all-purpose cleaner to remove as much dirt as possible. Then, allow wall to dry.
  • Prime wall with a high-quality, high coverage primer.
  • Paint your walls.

Things My Pole Builder Didn’t Discuss With Me

Things My Pole Barn Builder Didn’t Discuss With Me

Somehow I feel as if this should be a Jeopardy question for $400…..

Reader MATT in BUFFALO writes:

“Hi there, my pole barn has recently been constructed and I’m now looking forward to insulating and finishing the inside. My hope is to drywall all interior surfaces including the ceiling. I realized as we were finishing the build that this was never really a discussion with our builder, specifically for the ceiling. I would like to add 2×4 or 2×6 ceiling joists 24″ on center and hang 5/8″ drywall for my ceiling finish and insulate somewhere in the r38 range with fiberglass. I do not intend on having any storage above the bottom chord, but will leave access to the space. My truss plans show a bottom chord dead load of 5.0 psf and states in the notes that the truss has been designed for a 10 psf bottom chord live load, although under loading it shows a bcll of 0.0. It also mentions for bottom chord bracing that a ‘rigid ceiling directly applied or 5-8-15 oc bracing’ is allowed. I think 5.0 psf leaves me just barely enough to finish this how I’d like, but I’d like to run it past someone with experience. I’ve unfortunately had the hardest time getting a hold of the truss designer/manufacturer. Thanks!!”

Mike the Pole Barn Guru writes:

Oh – things somehow never being discussed before a build gets started…..

Don’t get me wrong, I am not blaming you.

Any responsible builder or building provider should thoroughly know their client’s eventual end use for their building and offer some reasonable options to achieve those goals. Sadly – so many “professionals” know only how to sell on a cheap price rather than value added benefits to potential building owners.

Let’s run through possible challenges –

Condensation control. Unless some provision was made to keep warm moist air from rising and touching underside of roof steel, it will “rain” in your attic. Solutions at time of construction (in order of preference) would be: a factory applied integral condensation control (https://www.hansenpolebuildings.com/2020/09/integral-condensation-control-2/), a well-sealed reflective radiant barrier (it really isn’t insulation https://www.hansenpolebuildings.com/2014/04/reflective-insulation-wars/), installing over solid sheathing (OSB or plywood) with 30# felt or a synthetic underlayment, or Metal Building Insulation (https://www.hansenpolebuildings.com/2011/11/metal-building-insulation/).

If no provision has been made, your option now would be two inches of closed cell spray foam applied directly to the underside of roof steel.

Ventilation. When creating a non-conditioned attic space, it must be adequately vented. Gable vents can be Building Code conforming, however from a practicality standpoint, they only ventilate well closest to their location (building ends). Best design solution is intakes at eaves, exhaust through ridge. Here are your requirements: https://www.hansenpolebuildings.com/2018/03/adequate-eave-ridge-ventilation/.

Most pole barn trusses are designed for a one psf (pounds per square foot) bottom chord dead load (BDCL) – inadequate for any type of ceiling. On truss spans of up to and including 40 feet, we include a five psf BCDL as a matter of practice (too many clients decide later on they want a ceiling) and if we know in advance a ceiling is to be installed, we use 10 psf BCDL. You have been fortunate to have at least a five psf BCDL. Your 10 psf bottom chord live load is a non-concurrent (assumes no other live loads are being applied such as snow) one and basically is there to provide a minimum degree of structural integrity allowing for occasional access to an attic space for maintenance purposes.

Depending upon span between trusses, size and grade of ceiling joists can be looked up at www.codes.iccsafe.org/content/IRC2021P2/chapter-8-roof-ceiling-construction#IRC2021P2_Pt03_Ch08_SecR802 scroll down to Table R802.5.1(1). In order to support 5/8″ sheetrock, ceiling joists should be spaced no greater than 24 inches on center.

Your actual dead loads will be roughly 1 psf for truss bottom chord itself (includes minimal wiring, lighting and truss bracing), 2×6 ceiling joists 24″ o.c. (I use one psf although actual load is slightly lower https://www.hansenpolebuildings.com/2013/02/2×6-lumber/) and your blown fiberglass (about a pound per cubic foot), so you should be okay. Cellulose or rock wool insulation are about three times as heavy as fiberglass, pushing to BCDL capacity, although my recommendation would be rock wool over other products as it is unaffected by moisture (fiberglass with even 1.5% moisture content can lose roughly half of its R value).

Ceiling Addition, Drywall Orientation, Ridge Vent Replacement

This week the Pole Barn Guru addresses reader questions regarding the ability to hang a ceiling addition in a Hansen Building, if it is better to hang drywall parallel or perpendicular to framing, and if Hansen can replace a ridge vent in Buffalo, NY

DEAR POLE BARN GURU: I purchased a 25′ x 35′ kit from you and was wondering if I can hang a ceiling in my pole barn? I have 11′ or 12′ trusses on center and was worried about the strength of the trusses to hold more weight. THOMAS in NEW TRIPOLI

DEAR THOMAS: Your building’s roof trusses are designed to support a five (5) psf (pounds per square foot) dead load from the bottom chords. This would be sufficient to carry 2×6 ceiling joists 24 inches on center on hangers between bottom chords, as well as 5/8″ gypsum wallboard (drywall) and blown in or batt fiberglass insulation.

Please note – in your provided photo wall girts have been externally mounted, they have been engineered to be placed bookshelf style, as externally mounted girts on 11′ and greater spans will fail due to bending and will excessively deflect. They should be removed, trimmed and placed to match engineered plans. Also – end trusses are to be notched into columns 1-1/2” to provide proper and adequate bearing. They should be carefully removed, notches cut, then properly placed.

 

DEAR POLE BARN GURU: I got my final inspection last week, so I have finished the workshop according to the county. Now I am working on the insulation and interior wall and ceiling finishing. For insulation, I am using R-19 craft faced batting for both walls and ceiling and might later add blown in above the ceiling to further increase the R value.

I have a question on the best orientation for the drywall for ceiling and walls. It seems that running the sheets perpendicular to the ceiling purlins and commercial girts would provide greater strength than parallel. What is your experience? I am planning on using 5/8 inch board.
Thanks, LEE in HUNTSVILLE

DEAR LEE: For best installation you will want to run drywall perpendicular to framing (e.g. vertically on walls) https://www.hansenpolebuildings.com/2019/09/11-reasons-post-frame-commercial-girted-walls-are-best-for-drywall/
Ideally, you should use unfaced insulation in your ceiling, this allows any warm moist air within your building to escape into attic space and be properly exhausted through ridge vent.

 

DEAR POLE BARN GURU: You’re listed as building pole barns in Buffalo, NY. I want to find someone that can replace my ridge vent that goes the full length of the building. Who do you recommend in the area and what choices do you have for a new vent for me? GARY in BUFFALO

vented-closure-stripDEAR GARY: If your steel panels are 3′ wide, with 5/8″-3/4″ high ribs every 9″ we can provide form fitted ridge closures, if so, please reach out to Materials@HansenPoleBuildings.com with your zip code and length of ridge line for pricing and availability.

Most of our clients are DIYers, should you need an installer, we would suggest your try posting in your nearest Craigslist under “GIGS”.

A Baker’s Dozen Post Frame Home Myths Part III

A Baker’s Dozen Post-Frame Home Myths (#8 – #13)

MYTH #8. THERE ARE NO FOOTERS IN POST FRAMES

Without having footers to protect concrete slabs on grade from freezing, there is a potential your concrete slab can move or heave around edges in cold weather. In turn, this can shift interior walls, resulting in damage to drywall finishes and trim.

If you do go with post-frame construction, you will have to add footers to stay in IRC (International Residential Code) compliance. This will add cost back into your home’s total price.

Fully-engineered post frame homes are 100% Building Code Compliant and most typically have properly pressure preservative treated columns embedded in ground with both concrete footings and bottom collars. Alternatively your home can be mounted to steel brackets set in concrete piers.

Either of these are designed to extend to or below frost lines or are frost protected by use of insulation. Footers themselves do not protect a concrete slab from freezing and heaving, using rigid insulation around slab perimeters is required for either stick frame or post frame in Climate Zones 3 and greater). With fully engineered post-frame, there is no need to incorporate thickened slab edges or continuous concrete footings and foundations.

MYTH #9. POST-FRAMES WILL HAVE LARGER SPANS BETWEEN ROOF TRUSSES

This is an issue because they’ll have to be filled in before you can hang drywall. If you hang drywall “as is,” it will all sag over time, causing structural damage (and a pain in your wallet). Adding this extra framing afterwards will add to total price tag again.

While some post-frame homes do have trusses spaced every two feet, most cost effectively your fully engineered post-frame home will have double trusses every 10 to 12 feet. If you desire to insulate at ceiling lines, ceiling joists are placed every two feet to adequately support drywall. This combination of double trusses and ceiling joists will still be less expensive than conventional stick framing’s trusses every two feet with structural headers required in walls. By widely spacing trusses, it allows for greater flexibility in locating doors and windows in exterior walls.

MYTH #10. POST-FRAME HOME TRUSSES HAVE VERY LIMITED SPANS

Prefabricated metal-plate connected wood trusses can easily span 80 to 100 feet without need for interior columns. Very rarely will spans greater than these ever be needed for a post-frame home.

IRC Section 802.10.2.1 further limits truss spans for stick-frame construction to a maximum of 36 feet and building lengths to 60 feet (measured perpendicular to truss span). Fully engineered post-frame homes do not have these limitations.

MYTH #11. EXTRA FRAMING BETWEEN POSTS WILL BE NEEDED

Comment from a stick frame builder: as opposed to traditional wall building, with post-frame you’ll have to build walls between posts. This is an added cost to an already built post-frame building shell.

Chances are this builder has never built (or probably seen) a fully engineered post frame building with bookshelf girts every two feet. All exterior wall framing is taken care of at initial installation, you get a deeper insulation cavity and a better surface to drywall. 

MYTH #12. INSULATION COSTS ARE HIGHER

Your post-frame home will require more wall insulation because post-frame walls are thicker than typical two-by-four construction. Therefore, insulation cost will be higher to fill this cavity.

Proper insulation systems are an investment, not a cost. Would you really want an energy bill based off of R-13 insulation in a two-by-four exterior wall? Engineered post-frame construction allows for thicker insulation cavities – reducing your energy costs for your home’s lifespan.

MYTH #13. POST-FRAME CONSTRUCTION IS TYPICALLY NOT USED WITH BASEMENTS.

Post frame construction is not very conducive when building on a basement, as basement walls will be made from poured concrete. Trying to adapt post-frame construction to a basement will end up with higher costs than traditional home building techniques. Bottom line: If you want a home with a basement, post frame construction is not your best choice.

Fully engineered post-frame homes can easily be engineered to attach to a concrete basement foundation, ICFs or even incorporated into a Permanent Wood Foundation, at similar or lower costs than stick frame.

Why Pre-cut Studs are 92-5/8″ Long

Why Pre-cut Studs are 92-5/8” Long

Growing up with my Father and six framing contractor uncles (my Dad’s five brothers and Auntie Darlene’s husband Vern) all of us male Momb cousins (myself, brother Mark, Kim, Randy and Scott) eventually became M.E.I. (Momb Enterprises, Inc.) teenage slaves. My beloved Uncle Gil even has on his Facebook profile, “Former Mean Boss at MEI”. Whilst our generation worked hard, we were generally looked upon as strong backs and weak minds – there was very little explanation as to why things were done a certain way, and lots of do it, do it quick and do it right.

In framing stud walls, Uncle Gil would give us an evil eye if we had a stud even a minute fraction of an inch off being directly between his lay out marks on top and bottom plates. Never was there a discussion of why it was we were framing with studs 92-5/8” long, when all other framing lumber came in even two foot multiples (albeit those were always ½” to 5/8” greater in length than an exact two foot).

Now an average small home takes roughly 400 studs, can you imagine how time consuming it would be to have to trim back all of these if eight foot material was ordered and 92-5/8” was desired? 

It wasn’t until I went to work managing Lucas Plywood and Lumber’s roof truss plant, where I became exposed to “P.E.T.” – Precision Trimmed Lumber. This was one service provided for by our lumber remanufacturing (aka reman) operation. While there, since I was good at math, I taught members of our lumber sales team how to do material takeoffs for stick frame home lumber packages.

Helpful hint to those of your reading along at home – want studs 16” on center (o.c.)? Take lineal footage of walls and order the same number of studs as feet of wall. 24”o.c. take lineal footage x 2/3rds. Works out to be remarkably close in actual use.

Anyhow, back to why studs are 92-5/8” long.

Interior Wall FramingAnecdotally, supposedly the company who first pre-cut studs couldn’t close their 1943 delivery truck’s tailgate with eight foot material – so studs were cut to fit the truck bed.

When 92-5/8” studs are placed upon a single 2x bottom plate and a double top plate, wall height becomes 97-1/8”. This allows for 5/8” drywall on ceilings and keeps wall drywall ½” above the subfloor. This gives space for drywall to expand and contract without affecting flooring, as well as from absorbing any moisture on the floor.

Even though post frame buildings, with interiors to be finished, should be properly designed using bookshelf (horizontal girts) for exterior walls, these same rules are best followed for determining floor-to-ceiling heights. By use of heights 1-1/8” greater than whole feet, material use is minimized and drywall sheets can be run vertically without need for cutting. For extended reading on why this is best: www.HansenPoleBuildings.com/2019/09/11-reasons-post-frame-commercial-girted-walls-are-best-for-drywall/.

Pool Inside Pole Barn

Pool Inside Pole Barn

Reader DOUG in SNOHOMISH writes:

“I am just starting the process of having an inground swimming pool installed but due to weather and TREES in my area I have decided to build a Pole Barn to enclose the entire pool.  I have done a lot of research on Pools and Pole Barns over the past 2+ years before coming to this conclusion.  With advice from you and a ex-framer brother I feel that this is the right direction based on cost and complexity level.

What I am missing is real details and examples of individuals that have done similar projects.  I could ask a million questions and spend days just chatting to you and/or other experts  but it is unlikely I would be allowed.    I have been searching the web for examples with more details on the different phases of the construction such as (1) Insulation, (2) Framing Walls, (3) Drywall, (4) Ceiling, (5) HVAC D, (6) Electricial, (7) ETC… but have not found much.  Is there any good information on such projects being undertaken by experienced DIY individuals?  (I know what you are thinking DIY = Don’t Indulge Yourself, but in this case I really am an Experienced DIY, having BUILT my own 4700sf home including either GC or hands on.  

I am really considering using a Hansen Pole Barn Kit for the shell, but need to figure out how to ensure 60% humidity inside the building doesn’t rot it from the inside out.  I know that HVAC Dehumidification will be very import, but so is how to seal the build walls from both the outside and inside, how to insulate the walls and ceiling (especially since we plan to have a flat ceiling thus an attic area where the Ceiling and Roof may need to both be insulated to avoid condensation, etc.

Any advice and especially great examples with details would be appreciated.”

Mike the Pole Barn Guru says:

It has been several years since we provided one of our buildings over a pool. Here is an article I wrote as a result of it and a more recent inquiry: https://www.hansenpolebuildings.com/2019/08/post-frame-indoor-swimming-pool-considerations/

Obviously your key to success is having a great HVAC/R system.

I do try to always err on caution’s side.

Adding to my referenced article above – I would add using all rock wool insulation as it is unaffected by moisture. Have a Weather Resistant Barrier between framing and wall steel (allows water vapor to exit the wall). Consider finishing the interior with cement board over a well-sealed vapor barrier, rather than “green board” moisture resistant drywall. Cement board is comparable in weight to drywall, so will not require adding to structural capacity beyond what sheetrock would take. Have a well ventilated attic (eave and ridge).

You will want to seal the interior – walls and ceiling, while having the exterior able to allow any moisture to escape.

Electrical is outside of my wheelhouse, otherwise you should be “good to go”.

Our Builder Has a Few Questions

Our Builder Has a Few Questions

Not a surprising statement, as few stick frame (stud wall) builders are willing to learn a new structural system, and few post frame builders have actually erected barndominiums or shouses (shop/houses).

I was a first group member (although willing to learn) and frankly lost my posterior financially erecting my first ‘pole barn’ because I had such a difficult time wrapping my head around left-to-right rather than up-and-down. I got my head on straight for building my second one and actually made $100 an hour back in 1980 erecting it!

For this second group, post frame home building takes in an entire new toolbox of concepts. Energy efficiency and ventilation concerns must be addressed, as well as a different set of efficiencies of material use. It is no longer just a ‘pole barn’  and requires a far greater degree of precision – it isn’t necessarily more difficult, but does take more thought.

Reader BRIAN in PETOSKEY writes:

Hi Mindi and Mike!

We’re really excited that we’re closing in on a final exterior design and starting to focus on the ‘fun stuff’ inside.

We shared the renderings and quote with our builder to keep him in the loop and he had some questions I wanted to share with you.

I’ve read your blogs and understand the argument for the truss arrangement that Hansen prefers. Trust me, I see the logic. That being said, he’s definitely one of those ‘trusses on 2′ centers’ kind of guys.

I explained all of the blog-based talking points on why it’s ‘better’. He was concerned that the material cost may be less, but the labor time would be significantly more to fill in between those spans with 2x10s, etc.

Furthermore, he usually covers the roof in OSB sheathing before putting on the metal. Is that included in this quote? Or is that something extra? He’s concerned about the logistics of applying the OSB with such wide spans between trusses. And in a similar vein, with drywall going on the full underside of all scissor trusses, he’s concerned about the additional lumber and labor needs to provide adequate hangers for sheetrock, etc.

And on top of that, he’s concerned about the lack of ventilation in the roof. I was under the impression that spray foam right onto the underside of the OSB for the entire roof was a best practice. He’s thinking we need baffles or something to allow airflow so as not to compromise the OSB over time.

So basically, a lot of questions on the construction logistics as it pertains to trusses and roof. Why not just run 31 scissor trusses on 24″ centers the length of the building and call it good? And how best to handle ventilation.

One comment he offered several times was that he understands the logic behind this construction style for a garage or storage building, but for a home with heat and sheetrock, etc. he thought this would be creating some obstacles for us.

If this is best answered via email, I’m happy to run middleman or add him as a CC on the answers. He also asked if Mike or someone from Hansen would be willing to talk to him on the phone? He’s open to the process, but wants to make sure he understands exactly what the construction process looks like. He said he would love to see a sample cross section or blueprint, but we both understand those are kept secret until we pay. He wants to wrap his head around it all.

One other concern was about wall framing. Some of the videos show horizontal studs as opposed to vertical. He wasn’t sure if that was always the case or if that is specific instances. Again, he’s a vertical stud kind of guy, but wants to understand if he can change that orientation or if it’s non-negotiable.

When it comes to truss space/between truss framing/wall framing, he’s definitely concerned about drywall logistics, OSB logistics (or not), moisture, and labor. And I want to make sure he feels heard and informed before we dump these plans and materials on his plate. I see both sides, but at the end of the day, he’s our builder and I need him to be fully on board before pulling the trigger. Could you help? I’m sure I’m not the first person with this quandary but I’ve also used enough pole barn builders in our area to know that he’s our best option for this project.

Thank you so much.

I see this dialogue as a parallel conversation to the design process. We’re forging ahead with design and working on our window and door placements this weekend.

Thank you!
Brian


Please tune in tomorrow for answers to Brian’s builder’s questions.

Fishing Cabin Insulation

Fishing Cabin Insulation Blog-Compliments to Rick Carr in sharing this post on how he insulated his fishing cabin. 

My insulation challenges are a little unique due to having an above ground crawl space, radiant floor heating above the sub floor, 2×8 and 2×10 walls and having a partial attic area (over the bedrooms) with the remainder a vaulted ceiling.  My insulation is done and the drywall is going up.  The test for the plan will wait until next winter.

Here is what I did.

First I had closed cell foam sprayed.  In the crawl space, walls 3 inches closed cell spray foam, completely sealed and R 21.  Also we sprayed the underside of the subfloor to 1 ½ to 1 ¾ inches.  The goal was to get R 1- to 12 on the underside of the floor.  The radiant floor people tell me that heat moves to cold, so R 12 under the floor will have heat going up into the living space rather than down into the crawl space.  There is also R 10 foam board and poly under the concrete.

I also had 3 inches of spray foam, R 21, on the underside of the roof steel.  The drywall will go on the underside of the roof purlins.  We used 2 x 10 roof purlins to get a 9.5 inch cavity for insulation.  I put Tyvek under the roof steel, so the spray foam actually adheres to the Tyvek, this will allow replacement of roof sheets, if ever needed.  This still leaves a 6 inch space for R 21 unfaced batt insulation.  Spray foam people will tell you that because the spray foam completely seals the effect is greater than the R value.

The Attic side of the divider wall was also prayed with 3 inches of closed cell foam.  There wasn’t a normal 6 inch cavity to fill with batt insulation which made the spray foam a good choice for this.  We also blew in 16.5 inches of fiberglass insulation into the attic above the bedrooms for R 49 in that area.

 The walls are another matter.  The 42 foot walls on the north and south sides of the building are 2 x 10 walls with 9.5 inch cavity.  The 30 foot east and west walls are 2×8 walls with 7.5 inch cavity.  I chose blown in wall insulation for the walls.  It is commonly thought that you can only have a pro blow insulation into your walls, not so, I did it myself, with some help.

I chose Owen Corning’s Procat product and system, which can be purchased from contractor supply houses. https://www.owenscorning.com/insulation/products/procat  This is the same product as used in the ceiling.  The supply house will loan you the blower, which has a control at the end of the hose.  You staple Insulweb netting to the framing, cut a small slit in the netting, insert the hose and blow it in.  This might be a little more costly than batt insulation, but where do you find batts for 2 x 10 walls?  Also the electric all over the place gets in the way of batts, no problem, filled in and around.  The blown in insulation fills into all cracks and spaces.  What you spend in the product is also made up in time/labor savings; it goes very quickly once you get the hang of it and the netting up.

The puffing or pillowing is not a factor because the product is light enough that the drywall will straighten it.  Also you can use your free hand to minimize the pillowing if you have a large cavity.  The product R value for 5.5 inch cavity walls (2×6) is between R 22 and R 24 depending on how full you pack it in.  With my 2×8 and 2×10 walls, the R value is literally off the chart, well over R 30.

 

I think I’ll be snug this winter.

Barndominium Drywall Cracks

You have just moved into your beautiful new barndominium, shouse or post frame home. Your drywall was painted and looked perfect for months and then you start to see seams cracking and screw heads popping through. Our first inclination is to blame whoever installed it. It is possible drywall was installed incorrectly leading to screw pops and seams cracking, however, it may be good to understand why drywall seams crack or screws pop. Many of them are not drywall installation process related.

NATHAN in INDIANAPOLIS writes:

“Do you see much movement in post frame homes…..that causes drywall settlement cracks, or a higher rate of nail pops in drywall?”

Drywall issues in post frame buildings can occur from several reasons – lack of an adequate footing thickness and/or diameter (rarely are concrete cookies adequate); base of column footing not below frost line; poorly prepared site (have to get rid of clay and prevent ground water from flowing under building); columns and wall girts not engineered to limit deflection.

drywall crackWhere two sheets of drywall meet, this seam is your wall’s weakest point. Drywall tapers spread mud and tape on joints to give strength to this area and then add layers of drywall mud to feather seams smooth to the rest of the wall. When a barndominium settles or walls move, drywall seams may crack if there is a “weak link”. One reason for cracking is because the wrong drywall mud type was used to tape drywall seams. Some drywall mud has more adhering ability and is intended to be used in the drywall taping step whereas other types of mud should only be used in finishing. Other drywall mud products are intended only for second or third coats. Some drywall tapers say mesh tape should never be used because it is not as strong as paper tape. Other drywall tapers say mesh tape is fine as long as it is used with quick setting drywall mud.

Drywall corner bead will at times crack as well. One reason is when corner bead was installed it may not have been installed to maximize strength. There are different types of corner beads and various installations. If screws were used there may have been too few. If vinyl bead was used with spray adhesive, perhaps not enough glue was used. Different drywall tapers and hangers have different opinions as to what process is strongest. Generally most feel the “tape on” corner bead is strongest and least prone to cracking. 

Another common drywall problem is popped screws where you can see what looks like a screw head showing through paint. This usually occurs within the first year after a drywall job has been completed. Drywall screws are used to secure drywall to framing below. Screw head puts pressure against drywall’s paper surface. If the screw head goes too deep and busts through paper into the gypsum layer below, it no longer has holding power. When installing drywall, drywall hangers will at times use construction adhesive on framing below and then use drywall screws to hold sheet until glue has time to dry. When this is done it reduces the number of screw pops. However, this is not a fix-all.

This being said, drywall tape’s strength is limited. Construction adhesive helps to hold sheets in place but fasteners, drywall tape and corner bead all have limited strength. If a barndominium settles and walls move to any great degree, no amount of tape or glue will keep it from cracking.

When cracks develop in a barndominium usually they run along high stress areas. High stress areas include areas above doorways and windows and over beams spanning long distances. If any part of your barndominium was built on improperly compacted fill it will have a greater possibility of settling. Most new barndominiums will settle some within the first year. Good drywall techniques can limit occurrence of cracks and screw pops, however cannot cure inadequate structural design.

How Not to Sheetrock Your Barndominium

How Not To Sheetrock Your Barndominium

Gypsum wallboard (aka Sheetrock or drywall) is used as wall and ceiling covering of choice for nearly every barndominium, shouse (shop/house) or post frame home. It affords a plethora of advantages over other interior finishes – for many, it is about cost savings. For others it is fire protection or a desire for sound deadening.

For shop areas, I see too many (in my opinion) using steel liner panels as an interior finish – usually in a misguided belief they will be a less expensive solution. Rarely is this true and liner panels are not without their own issues, as I have expounded upon previously: https://www.hansenpolebuildings.com/2013/08/steel-liner-panels/

Drywall can be installed quickly. My first summer out of high school I worked for B & M Inland Wallboard as a laborer primarily doing taping and texturing.  My boss, Joe Borg, was several things – reasonably priced (material and labor for standard homes ran 50 cents per square foot of sheetrock – hung, taped and textured with 5/8” on ceilings and firewalls, ½” elsewhere), quick (his hanging crews would do 2000 square feet of rock per man, per day for a nickel a square foot) and a fanatic about quality.

Sheetrock back then (40 plus years ago) was even more of a bargain than today, roughly 1/3rd cost. Even then, I saw some jobs not far removed from what is pictured above! When I was Sales Manager for Coeur d’Alene Truss, we did a truss job for a contractor, Joe Michielli, directly across the street from a rival truss company’s sales person. Following up, to see how everything went, Joe was busily and proudly hanging drywall. Little pieces of drywall – as Joe was bound and determined to not have any scraps larger than a foot square. I can’t even fathom how he ever managed to tape and texture it!

(As a seven degrees of separation thing, in 2017 Hansen Pole Buildings provided a post frame building kit package in Laramie, Wyoming to Joe’s son!)

There are methods of hanging, taping and texturing drywall to get a finished product my boss Joe Borg would have been proud of. And post frame buildings are perfect for this, as you can read here: https://www.hansenpolebuildings.com/2019/09/11-reasons-post-frame-commercial-girted-walls-are-best-for-drywall/.

11 Reasons Post Frame Commercial Girted Walls Are Best for Drywall

11 Ways Post Frame Commercial Girted Walls are Best for Drywall

Call it what you want, drywall, gypsum wallboard even Sheetrock® (registered brand of www.usg.com) and most English speaking adults know what you are talking about. In post frame (pole) building construction, wall girts (horizontal version of studs) are placed in bookshelf fashion, resisting wind loads and providing framework to attach sheathing and/or siding to exterior and a material like drywall on interior. Learn more about commercial bookshelf girts here: https://www.hansenpolebuildings.com/2011/09/commercial-girts-what-are-they/.

It turns out horizontal framing lends itself well to vertical application of Sheetrock® and here is why (horizontal being used to describe drywall run long direction left and right):

1 – Defective Seam – Horizontal rows needing more than one drywall panel creates (instead of avoids) butt-joint humps, which are not flat and are a twice (minimum) effort defect. Outlet and switch cover-plates, window and door trim, baseboards, pictures, mirrors and cabinets don’t sit flat. Using any “butt-joint product” erases all “claimed” benefits of Horizontal!

2 – Unsupported Seam –Light switch and countertop electrical boxes within a horizontal seam equals more weakness and butt-joint doubled, minimum, efforts.

3 – Structural Defect – Horizontal only reinforces a vertical studwall height of 4’ or less, a full-height studwall’s top-plate is never connected to the bottom plate. As in and due to #2 above, Frictional Contact is minimized (instead of maximized by Vertical).

4 – Seam Deception…4’x8′ Panels – Example 1: 48” tall by 102” long wall, Horizontal = 48” (technically) and it’s a 24” wide butt-joint or a minimum of doubling 48″ (Vertical = the same, generously, 96” but they’re easy 6” wide joints). Example 2: 96” tall by 102” long wall, Horizontal = 222” with 50% being 24” wide butts (Vertical = 192” of 6” wide easy joints, yes less)…in a Kitchen Horizontal = 100% of 24” wide butts (Vertical = 0%). Yes, Horizontal does taper area twice (minimum) in order to hide its butts, so very minimally just another 24” was added and #5 below was not factored into Horizontal’s monumental fraud.

5 – Self-Defeating Angles – Horizontal only uses one of a panel’s tapered edges and puts other taper at ceiling corner and baseboard creating (instead of avoiding like Vertical) a twisted angle having to be shimmed or additionally mudded. This too, instantly erases all “claimed” benefits of Horizontal by doubling seam amount, patching itself to equal Vertical!

6 – Unfriendly Seams – Horizontal celebrates chest height seams and pretends there’s no 24”-wide floor to ceiling butt-joint and ever present baseboard bevel of unfinished work. (Vertical has easy joints and top is screwed, taped and mudded later with ceiling corner and baseboard spots can also be done separately).

7 – Unsafe Installation – Horizontal needs two people for a safe installation and panel is airborne, literally creating chances to cause injury (Vertical easily tilts-up with just one person). Using a panel lifter is not even as easy and safe as Vertical’s tilt-up.

8 – Additional Waste – When correctly covering a knee wall, half wall, tub front, column or soffit by first removing both tapered edges, Horizontal can’t use these tapers elsewhere (Vertical can and does). And, Horizontal wastes four times as much mud on their completely unnecessary butt-joints and baseboard bevels…if ever done.

9 – Destructive Ignorance – Foundation and Framing crews go to great pains to make everything flat, level, plumb and square. Horizontal destroys those efforts with their defective humps and baseboard bevels (Vertical keeps this perfection).

10 – Costly Slow Complication – Horizontals depend upon pricey special muds and even messy tape or taping tools wasting mud. Taping tools still require a second step of knifing tape and muds require a mixing step. This is more expense, more time, more tools and equipment and more water…for an inferior job! Vertical’s superior with cheapest ready-mix bucket muds and dry self-adhesive tape. Again, Vertical’s seam treatment is just for looks.

11 – Fire Rating Fail – Most Single-ply or Single-layer drywall for Commercial Work is required to be installed vertically, to obtain drywall’s actual fire rating. 

Post frame construction and vertical application of drywall –  faster overall and immensely better in every way.

When a Contractor Ignores Building Plans

I realize this may come as a surprise, but there are more than a few times I have discovered building contractors have made errors in building assembly due to failure to examine the provided building plans.

Shocking.

Our client STEVE in HINES writes:

“Good morning, my building is framed, sided and roofed. However, yesterday we discovered that the sidewalls girts should have been 2x 8’s but 2×6’s were used instead (same as the endwalls). I know this is my problem to fix, but before I tell the contractor, I’d like to know if you have ever heard of this happening and if so, what they had to do to fix the problem. As it stands, it definitely does not meet wind code anymore. I’m not asking for a fix, but only some direction as where to start pursuing one. Could very well become a messy job!

Thanks.”

Well, to begin with, I was a post frame building contractor in a past life. At times we had as many as 35 crews erecting buildings in six states. Most of these crews were very, very good. Some of them were not quite as good. Overall this mix did give me an interesting perspective – if something could be done wrong, one of my crews figured out how to do it. Along with this, chances are I have had to come up with a fix for these unexpected challenges.

In Steve’s case, actual reasoning for 2×8 sidewall girts was so his building could have a flush interior surface to drywall – known as commercial girts. (Learn about commercial wall girts here: https://www.hansenpolebuildings.com/2011/09/commercial-girts-what-are-they/)

Our curiosity question was – what did the builder do with the 2×8 material supplied for girts? It turns out client had a pile of 2×8 left over when the pole building was completed. They ran short of 2×6, so building owner just assumed someone had stolen them and more were purchased!

Anyhow – there are several possible fixes. 2x4x12′ could be ripped and nailed along length of  2×6 installed where 2×8 should have been, or 2×4 could be placed vertically (3-1/2″ face against girt inside face) every two feet’ to provide a surface to attach drywall. Whichever choice is decided upon, a revision should be done to plans and sealed by Engineer of Record to verify adequacy.

Bookshelf Girts or Stud Walls?

Why Use Bookshelf Girts Rather Than Studs?

Long time readers may recall my Grandpa Pete was a home builder and his sons – Sid (my father), Neil, Lyle, Gil, Dave and Amund were all framing contractors. https://www.hansenpolebuildings.com/2011/06/before-the-pole-barn-guru/. Besides being raised with “wood is good”, I had a concept of vertical stud walls permanently ingrained in my head!

Stud walls led to my losing my posterior erecting my first post frame (pole barn) building. I struggled with this 90 degree ‘flip’ in framing concept far more than I needed to. Luckily, I was able to wrap my head around left-to-right rather than up and down when it came to my second building and I actually made some very good money!

Reader TRENT in WALLA WALLA writes:

“I am currently working on plans for building my first post frame home. It will be 30×48 single story. I am trying to figure out the best wall girt design. I am looking at going with 2×8 bookshelf wall girts or vertical stud walls between the posts. I see more people going with bookshelf girts vs vertical studs. Is there any drawbacks or reasons not to use vertical stud wall framing between the posts?”

Mike the Pole Barn Guru responds:

Installing a ceilingPretty straightforward – vertical stud walls will take more lumber. Besides increased material investment, more pieces mean more connections and more labor.

Imagine, if you will, a pole building with a 10′ eave height and columns every 12 feet. Bookshelf girts take (1) 2x4x12′ pressure treated, (4) 2x8x12′, (2) 2x4x8′ for blocking girts ends and (2) 2x4x12′ to attach drywall at the ceiling level – 98.67 board feet of lumber. For stud walls (1) 2x6x12′ pressure treated, (7) 2x6x10′ studs, (1) 2x6x12′ top plate, (1) 2x4x12′ to attach drywall at ceiling level, (4) 2x4x12′ horizontally to attach steel to wall studs – 134 board feet of lumber. From a structural aspect, care will need to be exercised in attachment of the top plate and end studs to adequately transfer wall bay wind loads to columns. It may necessitate some sort of Simpson strap to properly anchor the plate to columns.

 

 

 

 

Concerns of a Post Frame Building Kit Shopper

Hopefully most, if not all, of my loyal readers are those who have concerns when it comes to investing in a new post frame building (I do know some of you just enjoy my slightly skewed sense of humor, or find my writings otherwise entertaining). For those of you who are avid kit shoppers, I try to give honest advice to any question posed to me.

Reader TRAVIS writes:

“Hello, I’m shopping around potential kit purchases and have a few questions. 

First off I’m planning to finish the interior, are the long spans between trusses you design able to handle the dead weight of drywall ceilings? 

One of my main concerns is column rot as my area is fairly wet. What type of treatment is used on the columns, where do you source them from, and do you ever recommend concrete permacolumns? 

Is it possible to use half scissor trusses and half regular to gain extra height in only certain areas? 

Thank you any help is appreciated.”

Mike the Pole Barn Guru gives advice:

Yes, we are able to design roof systems to support virtually any dead weight – including gypsum wallboard (drywall). Whether a Hansen Pole Building, or not, it is just a matter of the proper loads being applied in the engineering design phase of the truss process, then (if the trusses are spaced over two feet on center) using appropriate framing between the bottom chords of the trusses to support the loads without undue deflection.

If you intend to insulate above the ceiling, make sure to ask for the trusses to be designed with a raised heel at least two inches higher than the depth of the ceiling insulation, to allow for full thickness of the insulation above the sidewalls. Normally this has little effect upon the price of the trusses, however the building must be made taller to provide the same interior clear height.

All Hansen Pole Buildings’ structural columns (supporting roof loads) are pressure preservative treated to a minimum UC-4B specification, which is the requirement per the IBC (International Building Code). Even under extreme conditions, these columns should more than adequately support your building not only for your lifespan, but also your grandchildren’s. The longevity of properly pressure preservative treated lumber has been well documented in scientific testing.

We’ve had clients use concrete permacolumns – if your concern is properly pressure preservative treated wood not being adequate for your situation, a less expensive (and easier to build) alternative would be to pour the column holes full of concrete and utilize wet set brackets.

It is possible to mix any combination of scissored and flat bottom chord trusses throughout your new post frame building to gain extra height or for aesthetic purposes.

 

 

Properly Treated Poles, Ceiling Loads, and Uplift Plates

Properly Treated Poles, Ceiling Loads, and Uplift Plates

DEAR POLE BARN GURU: My pole barn is approximately 25 years old. My question is, does the foundation need to be treated for maintenance to prevent rotting? The wood that is underground was originally treated wood but how long does that last? The floor inside is concrete but there is no concrete around the framing which meets dirt on the outside. NORMA in CASSOPOLIS

DEAR NORMA: Despite what might be voiced by naysayers – properly pressure preservative treated lumber should, under most circumstances, last longer than you and I (or our grandchildren) will be around to see. If you are curious, excavate the top eight to 12 inches of soil around one or more of the columns and check on the condition of them. We are currently adding onto our warehouse – a 40 year old post frame building. Some of the existing columns were dug alongside and it was determined there had been no noticeable decay at all. I would suspect yours will be the same.

 

DEAR POLE BARN GURU: Can you strap a ceiling for drywall ceiling in a pole barn if the joists are 8 ft apart? TOM in BLAIR

DEAR TOM: I will do what I feel is some interpreting….where “joists” are the prefabricated metal connector plated wood roof trusses, and “strap” would refer to framing placed across (or more probably between) the bottom chords of the trusses.

If your trusses have been designed to support the weight of a ceiling load, then yes. Hansen Pole Buildings uses a 10 psf (pounds per square foot) design ceiling load for instances where gypsum wallboard will be applied. A five psf load might possibly be adequate with bare minimal framing and nothing ancillary hanging from the bottoms of the trusses. You would be well advised to consult with the engineer who designed your building, or the truss fabricator to insure your roof system is indeed adequate to support these loads.

Once truss adequacy is confirmed your engineer can specify the size, species and grade of the material to be used as ceiling joists as well as what he or she requires as a connection between the ceiling joists and the trusses.

DEAR POLE BARN GURU: What is used to hold the post in the concrete? galv nails pounded into the 6×6 treated post post? Rebar drilled through the post as a big nail? Galv-steel anti-lift brackets of some sort? GLENN in PORTLAND

DEAR GLENN: Hansen Pole Buildings now supplies (as a standard feature) one or more UP-Lift plates per each structural column (the required number will depend upon analysis by the Engineer of Record). It would require a significant number of large diameter nails to equal the holding power of a single UP-Lift plate.  Rebar through the column might prove to be adequate, however it does involve a significant amount of effort to drill the holes through the column, cut rebar to short lengths and seal the rebar at the edges of the column to prevent water infiltration. In any case, the ultimate responsibility for design of adequate uplift resistance should be left up to the engineer who designs your building.

For more information on UP-Lift plates read here: https://www.hansenpolebuildings.com/2014/05/up-lift-plates/


 

Drywall Idea, Bolt Counts? and Don’t D-I-Y This!

DEAR POLE BARN GURU: Will I have problem with moisture in the wall if I nail drywall to the gerts and leave the 6×6 poles exposed? I may put a stove for heat in it while I am in it occasionally. I have insulted the roof. Concrete floor. JAMES in NEW ALBANY

DEAR JAMES: Provided you have a good building wrap between the siding and the wall girts (read more about building wraps here: https://www.hansenpolebuildings.com/2012/11/house-wrap/), as well as a well-sealed vapor barrier between the girts and the drywall, you should be able to minimize the effects of moisture in the wall.

Now your bad news. I will take a wild guess and surmise your post frame building has girts nailed flat on the outside of the columns. If so, and you attempt to drywall to the inside face of the girts, be prepared for infinite issues with the drywall joints cracking due to excess deflection.

If there is no building wrap, a quick and easy fix is to have an inch or more of closed cell foam insulation sprayed on the inside of the siding.

I’d most probably either build a vertical stud wall between the columns, or place another set of horizontal girts on the inside of the columns. Either of these would afford an insulation cavity with enough depth to make a difference. This would allow BIBs insulation to be blown into the wall with a minimal number of heat transfer points.

DEAR POLE BARN GURU: How many lag bolts should be used in a 4 x 6? This is for the truss supports. COREY in PAW PAW.

nailing trussesDEAR COREY: My educated wild guess is your post frame building has trusses placed on top of a truss carrier (basically a header from column to column).

You can find the size and number of required fasteners by looking at the data prepared by the engineer who designed your building, as this information will be on the sealed plans.

Numerous factors would be involved in the determination of adequate fastening. If the carriers are notched into the columns, far fewer fasteners will be required, as they will only be needed to resist wind loads.

If the carriers are placed on the sides of the columns, then the roof load is typically the governing factor. The fasteners then have to resist the live loads (snow and any attic bonus or storage space) plus the dead loads (weight of roof system and covering, as well as any ceiling.

The spacing of the columns and span of the truss impact the number of fasteners as well.

If for some reason this information is lost or missing from your plans, a competent local RDP (Registered Design Professional) should be engaged to provide a connection design for you, as this is hugely critical to prevent unexpected failures which could result in bodily harm or death. DO NOT GUESS.

 

DEAR POLE BARN GURU: How can I build a strong 30 foot truss that won’t sag. LARRY in TYLER

DEAR LARRY: I hate to just throw out the obvious, but in your case I will – DO NOT BUILD YOUR OWN TRUSS.

Prefabricated metal connector plated wood trusses are nothing short of an engineered miracle. You can have them designed to support any load which you can conceive of, have them delivered to your site and engineer sealed drawings are provided to confirm the required load conditions are met.

A quick Google search of “Tyler Texas Wood Roof Trusses” will give you several possibilities to discuss your needs.

 

 

Commercial Girts Best for Drywall, Site Prep, and Condensation

DEAR POLE BARN GURU: I’m considering a pole barn for my residence but had a question about the girt placement between posts. I read in the FAQ section that they are placed like shelves between posts. Would it be possible to mount drywall directly to these for interior walls without additional bracing or building of interior wall frames? I’m trying to avoid framing an entire building within a building, it seems pointless and not cost effective. If I need to frame every interior wall to hold drywall and insulation, I can simply build a standard stick frame house. VAN in INDEPENDENCE

Installing Drywall on CeilingDEAR VAN: Bookshelf girts for insulation (e.g. Commercial Girts) is a quick and easy way to create a deep insulation cavity as well as providing the framing for your interior GWB (Gypsum Wall Board). You will want to confirm your new post frame building frame is stiff enough to prevent undue deflection from cracking the GWB joints.

Learn more about commercial girts here: https://www.hansenpolebuildings.com/2011/09/commercial-girts-what-are-they/.

DEAR POLE BARN GURU: I have property in an area that floods from time to time. For example, can a monitor barn (approx. 25×50). with side sheds be built. The idea I have is the side sheds serving as porches and under the barn would be a drive through area. there is already a modular home built in the area that is elevated about 4 ft. off the ground and they have had no problem . Thanks, MIKE in MOLINA

DEAR MIKE: You can build any sort of post frame building on your site which will be allowable under the limitations of your Planning Department. As to dealing with the flood issues, you should have your property elevations determined by a surveyor, and the site where the building will be constructed can then be built up so the floor will be above the flood plain level.

 

DEAR POLE BARN GURU: I recently purchased several 4’x50′ reflectix double bubble foil rolls. I’ve put up a brand new 30×56 post frame metal building and was going to use this product to keep the metal roof and walls from condensating not to mention I was hoping it would help keep some heat in during the winter and heat out during the summer until I truly insulate the inside. My question is, for ease of installation on my metal roof panels, is it acceptable to put the foil on the underside of the 2×6 roof joists instead of sandwiching it between the roof joists and metal? There will be no roof venting due to leaving the trusses and attic space exposed. My only real concern is that it could condensate worse installing it this way. Also I will not be continually heating the building. Only on occasion with a propane heater while I’m working. I’m not real savvy when it comes to insulation and condensation control so any advice would be appreciated. Thanks in advance! Brandon

DEAR BRANDON: While it would be easy to install the steel roofing without having to place the reflective radiant barrier between the roof purlins and the roof steel, it is going to be the easiest method to limit condensation issues, given the product you have invested in. Hopefully you have gotten the double bubble with a tab along one side and an adhesive pull strip, otherwise you will have to tape all of the seams as you work your way along the roof.

Could you place it on the underside of the purlins? Yes, however in order to work as an effective condensation control, it has to be absolutely tightly sealed against any protruding framing members. Remember the time you saved on installing the roof steel? You just ate it all up.

If you have not yet ordered your steel roofing you could resell the reflective radiant barrier online and order steel with I.C.C. (Integral Condensation Control) attached (see the article and video here: https://www.hansenpolebuildings.com/2017/03/integral-condensation-control/).

 

 

Real Estate Value, Post Brackets, and Interior Finishing

DEAR POLE BARN GURU: As a licensed Real Estate agent and looking to move, I realize how crazy the market is (at least in Michigan and the Grand Rapids Area).

Considering building a pole barn home for my wife and I when we sell our house, however what about resale value?

My concern is regarding appraisal or the possibility of having comparables should we need to sell after we build. At best I could think of manufactured, but that would depend on what the building is “labeled” as. Speaking to a professional lender he seemed convinced that I would HAVE to have a cash buyer, or someone doing a portfolio loan at 15% down.

Do you know of anyone who was able to sell their pole barn house with financing, and if so, what did the appraiser use as their comps?

Thank you in advance! GAGE in ROCKFORD

Gambrel roof pole barnDEAR GAGE: Post frame homes will have the same value as a comparably sized and featured stick built home. Think of it from this aspect – both have permanent foundations, both are constructed onsite out of wood framing. The structural system is “wood framed”. Period.

When you (or a buyer) go to get a loan, remember to use “wood framed” otherwise you will entirely confuse the lender. For comps, your appraiser will be looking at other similar sized and featured wood framed homes which have sold recently in your area.

I cannot vouch for people selling their homes with financing, however I financed and refinanced my own home and with two very elaborate post frame accessory buildings (both of which are livable spaces). Through three appraisals, never once did the question of post frame come up.

DEAR POLE BARN GURU: Wondering if you can place the 6×6 pole onto a concrete foundation with brackets that hold pole to concrete?

DEAR JOE: Yes, it can be done, provided the 6×6 is adequate to carry the loads being imposed upon it. Here is information on the brackets: https://www.hansenpolebuildings.com/2012/09/concrete-brackets-2/.

DEAR POLE BARN GURU: I have a pole barn that I would like to finish the interior on
the posts are spaced 8′, the building has 7/16 osb over the wall girts (vinyl siding), I did a cut
and cobble job of rigid foam (1 inch) . My idea is to use 7/16 osb to finish inside and Maybe add sheetrock at some point- my concern is the support of interior walls-do I just let the wall girts carry the load or do I figure a way to anchor into posts? Thanks very much, Robert in Middletown.

DEAR ROBERT: Not sure why you would want to go to the added expense of placing OSB on the inside and then later adding gypsum wallboard, other than your post frame building frame may have too much deflection to prohibit taped drywall joints from cracking.

Before adding GWB (gypsum wall board) you should verify with the engineer who designed your building to make sure it is adequately rigid to be able to support it. If you are unable to contact the engineer, then you should consult with a RDP (Registered Design Professional – architect or engineer) who can confirm it is adequate, or recommend a fix or fixes if it is not.

Once you know all is good, a set of girts should be attached to the inside of the columns to support the GWB. This will also create an insulation cavity where you can add fiberglass batts or even better – do BIBs (information on BIBs here: https://www.hansenpolebuildings.com/2011/11/bibs/).


 

How Can I Add interior Walls to a Post Frame Building?

DEAR POLE BARN GURU: How difficult is it to add interior walls to build rooms inside the pole barn. Are more materials needed to add interior rooms and do the exterior walls need extra support? PATRICIA in McMINNVILLE

DEAR PATRICIA: The beauty of post frame (pole barn) buildings is the great majority of them are designed to be clearspan – there are rarely interior columns to avoid, so non-structural interior walls can be placed anywhere!

Home OfficeThis was a great feature for my lovely bride and I, as we moved walls all around until we came up with the configuration which best met with our needs – after the building shell was completed.

There is a caveat – if the interior of your building is going to have gypsum drywall (aka sheetrock) it is important to have the structure designed to limit the deflection. Most post frame buildings are designed with only the deflection of steel siding in mind, which would cause many drywall joints to crack under wind or seismic events.

If properly designed (better make sure an engineer was involved in those original plans) then no materials should have to be added to the exterior framework in order to add interior walls. You will, of course, have to provide the materials for the interior walls themselves.

DEAR POLE BARN GURU: Can Hansen provide a kit that will work as a picnic shelter with no walls, just the poles and the roof with the triangle gable ends covered with siding? JOE in MISENHEIMER

DEAR JOE: Yes we can provide roof only buildings. In most cases, it is less expensive to cover one or both endwalls to the ground, rather than building just a pavilion style structure. Here is a link to a previous article where I expound upon why: https://www.hansenpolebuildings.com/2015/04/roof-only-pole-buildings/

DEAR POLE BARN GURU: I am doing a barn w apartment , the whole building will be conditioned space, I am looking for the best house wrap for my barn and new home?

I am wondering if insulated Tylek or insulated panels are worth it on outside since I’m framing w 2×6 and concrete lap siding? Thanks DANIEL in WOODBINE

DEAR DANIEL: Most Building Permit issuing jurisdictions are going to require a Weather Resistant Barrier underneath siding around a conditioned space, so there is probably not much of a choice. For the most part, concrete lap siding should be installed over a solid sheathing such as OSB (oriented strand board) or plywood to prevent waves in the material and to give the building adequate shear resistance. Here is the link to the first of a three part series of articles I wrote on Weather Resistant Barriers: https://www.hansenpolebuildings.com/2016/01/determining-the-most-effective-building-weather-resistant-barrier-part-1/.

Gypsum Board on Walls

If it is weird, strange or otherwise just bizarre, when it comes to pole buildings, chances are it will eventually come across my desk. Otherwise I would have run out of material to write articles about a long, long time ago.

And it is rewarding to know I’ve got lots of loyal readers – like my friend Vincent….when technology failed last week and an article wasn’t up right away one day last week, he let me know how saddened he was, as he reads them every day at lunch!!

Back to the otherworldly….

We have clients who are constructing two fairly good sized buildings for the growing of green leafy substances which are entirely legal (although highly regulated) in two states currently – Colorado and Washington. The buildings were ordered with framing to support steel wall liner panels, so evenly spaced up the walls, the girts are every 34-1/8 inches on center. All well and good, for steel.

However, the clients have now determined they would like to have gypsum board drywall (aka sheetrock) on the inside of the exterior walls. It appears this decision may be due in part to their Building Official deciding the Building Occupancy Classification F-1 structures are somehow not allowed to have steel liner panels over insulation….we’re awaiting the section of the Code (2012 International Building Code) which would have this stipulation, as currently we have been unable to find it.

The determiner on whether gypsum board will work in any given application is going to be deflection.

“IBC 1604.3 Serviceability. Structural systems and members thereof shall be designed to have adequate stiffness to limit deflections and lateral drift.”

green-drywallIBC TABLE 1604.3 DEFLECTION LIMITS addresses the allowable deflection as “l” – the distance being spanned divided by a given unit of acceptable deflection. For exterior walls with flexible finish (such as gypsum drywall) under a wind load, this limitation is l/120. And from Footnote “f” of the table, “The wind load is permitted to be taken as 0.42 times the “component and cladding” loads for the purpose of determining deflection limits herein.

The Vult design wind speed for this structure is 110 mph (miles per hour). The net lateral pressures on the walls are greatest in Surface 1E (near the corners) of 17.697 psf (pounds per square foot), with a components and cladding wind pressure of -19.6 psf. 19.6 psf X 0.42 = 8.232 psf.

I called the good folks at USG (United States Gypsum – www.usg.com) to get their take on whether their 5/8” thick Sheetrock™ would span the 34-1/8” on center spacing of the wood framing without undue deflection. Being it was late on a Friday afternoon, the feedback was limited in its scope, however, they did email me the “Gypsum Association Properties of Gypsum Board”, which turns out to have some useful information. On Page 3 of 5 of the document copyrighted by the Gypsum Association is a table for “Negative Wind Load Resistance”. For ½” thickness over wood framing at 16 inches on center the allowable load is 80 psf, for 5/8”130 psf.

Allowable deflection is based upon the span^4. This makes the deflection at 2.84375 feet (34-1/8”) 20.692 times the deflection of 1.333 feet (16”). Using 130 psf / 20.692 results in a maximum psf of 6.28 which is less than the calculated 8.232, so 5/8” gypsum drywall would not be an adequate design solution. Under these load conditions, the maximum span of the 5/8” gypsum drywall would be 31.9”.

What about ½” drywall over 24 inch on center supports? The deflection at 24 inches on center is 5.0625 times the deflection at 16 inches. 80 / 5.0625 = 15.8 psf, which would prove adequate given these loads.