Tag Archives: floor trusses

Beyond Code: Preventing Floor Vibration

Beyond Code: Preventing Floor Vibration
by Frank Woeste, P. E., and Dan Dolan, P. E

Floor vibration, or bounce, is not a safety issue — it’s a performance issue, and one that’s likely to be impor- tant to homeowners. No one likes to hear the china rattling in the cabinet when they walk across the room. But at what point is the floor stiff enough, and how can a builder predict how the floor will perform?

Unfortunately, there’s no clear-cut rule for a builder to follow, and the physics of vibration are so complicated that it’s no easy matter to design a guar-anteed bounce-free floor (see “Sizing Stiff Floor Girders,” Practical Engineering, 8/97). Also, “acceptable” floor perfor- mance is highly subjective: What’s good enough for one homeowner may not be good enough for another.

The building codes don’t help much in this regard. They’re primarily con- cerned with safety — in other words, the strength of the beam rather than its stiff- ness. The most stringent code limit for joist deflection is 1/360 of the span: For example, a joist with a clear span of 15 feet must not deflect more than 1/2 inch under live load (people and furniture). The dead load — the weight of the floor materials — is not typically included in calculating deflection.

And yet it has been known for decades that a span/360 live-load deflection limit will not necessarily yield floors that are acceptable to everyone when it comes to vibration.

The purpose of this article is to pro- vide some simple rules of thumb for tak-ing the annoying vibrations out of floor systems, whether you’re framing with solid-sawn joists, metal-plate-connected floor trusses, or wood I-joists. There’s no guarantee that every customer will be satisfied if you follow these guidelines, but they should prevent the vast major-ity of complaints.

Some Quick Rules of Thumb
Before looking at specific types of joists, here are some general guidelines for controlling bounce.
✔Shorten the span. In general, shorter spans make for stiffer floors. For exam- ple, if the L/360 span table tells you a joist of a given size, grade, and species will just barely work for your span, shorten the span by adding a girder near the center of the original span. The resulting floor will vibrate less.
✔Increase the joist depth one size. If the code requires a 2×8 at 16 inches on- center, then use a 2×10 of the same grade and species. Or use a 14-inch- deep floor truss when a 12-inch deep truss would meet code requirements. This may not be the most cost-effective solution in every case, but it’s easy to remember and will save time and worry.
Probably the least efficient way to improve floor performance is to reduce the on-center spacing — 16 inches to 12 inches, for instance. Occupants feel “bounce” as a result of a foot impacting an individual joist. But even at 12 inches on-center, the joists are not close enough for the shock of a foot to be car- ried by two joists.
✔Glue and screw the sheathing. Floor sheathing should always be glued down. Screws work better than nails for long- term bounce control.

Design for Solid-Sawn Joists
Our recommendation for stiffening solid-sawn floors is a simple modifica- tion of a rule that was published in 1964 by the FHA: For floors up to 15 feet, limit live-load deflection to span/360; for spans over 15 feet, limit the live-load deflection to 1/2 inch (see Table 1, page 69). In adopting this rule, we encourage builders and designers to ignore the reduced live load of 30 psf for sleeping areas, and instead use the standard 40 psf live load for all rooms. After all, a bedroom can become a study or home office, and the traffic may be heavier than in a living room.

Metal-Plate-Connected Floor Trusses
Floor trusses are a unique product in that they accommodate effective strong- back bracing (see On the House, 7/98, for more on strongbacks). The consensus among wood truss professionals is that strongbacks are effective in minimizing annoying vibrations, and that they are well worth the time and money it takes to install them.
Table 2 illustrates the expected perfor- mance of various floor truss designs, using a 40-psf live load. Table 3 gives guidelines for sizing and installing strongbacks. For best performance, strongbacks should be installed near the center of the span (versus two at the third points) in upright position and attached to a vertical web. The strong- back should also be located at the bot-tom of a vertical web. To be effective, the strongback must be snugly attached to each web, as indicated by the nailing recommendations in Table 3.

When, for whatever reason, the verti-cal webs don’t line up, you can attach a 2×4 or 2×6 scab to the top and bottom chords for attaching the strongback to the truss (see illustration). The total number of nails used to attach the scabs to the truss chords should match the number used to attach the strongback to the vertical web.

Some of the truss professionals that we interviewed when developing Table
2 had more restrictive rules to offer, but none had less restrictive design advice. Again, no design criteria is guaranteed to totally eliminate vibra- tions, but we believe that following the recommendations in the table will minimize complaints.

Wood I-Joists
When using wood I-joists, a simple way to get good results is to always use the tables designed for span/480 deflec- tion. Any I-joist stamped under the new APA standard for performance rated I-joists is automatically designed to meet the span/480 limit. The stan- dard also uses 40 psf as the minimum live load for any floor. The APA stan- dard is now being used by some I-joist manufacturers to make selection of I- joists easier. The allowable spans for various spacings are printed right on each joist.
Another design system for control vibration in wood I-joist floors is Trus Joist MacMillan’s TJ-Beam software. Trus Joist has done extensive testing of floor performance and has developed its own rating system. Using the software, a user can select a number between 20 and 70, with 70 offering the greatest level of protection against potential floor prob- lems as judged by an occupant. For example, a design that is rated at 55 is expected to be judged as “Good to Excellent” by 96% of the population, while 2% should judge such floors as “Marginal,” and 2% should judge the floor to be “Unacceptable.” This system allows the homeowners, through their contractors or architects, to select the level of floor performance to meet their expectations.

We tested the software for a 16-foot clear span supported by 2×4 walls (16 ft. 7 in. outside-to-outside), with I-joists 16 inches on-center and a residential load of 40/12 (live load/dead load). Using a 9.5-inch TJI Pro-250, the rating was 35. Increasing the depth to a 14-inch TJI Pro-250, the rating was a 53. Tightening up the spacing of the 9.5-inch I-joist to 12 inches on-center increased the rating only to 42 — illustrating that going to a deeper joist at the same spacing is a bet- ter solution.

The TJ-Beam software also provides a relative cost index that tells the user how much extra an improved floor will cost. Often an improved performance design can be obtained with the same or even lower cost than the original design.

 

Attic Space, Cost Effective Size, and Column Sizing

This week the Pole barn Guru answers reader questions regarding a 6ft attic space over a 30×44 pole barn, the most “cost effective” method to build, and the point at which a post increased from a 6×6 to a 6×8.

DEAR POLE BARN GURU: We want a decent-height (a bit over 6ft) attic space in our 30×44 pole barn (on a concrete slab foundation), can we use steel trusses or would wood trusses be a better option for this? The ground floor ceiling height is 8ft. Thnx for the help. RON in TONEY

DEAR RON: Lots of possible design solutions available. To begin with, I would recommend wood trusses – should you ever want to finish a ceiling, or if you want to have a product fabricated under strict quality control standards, then wood trusses are your best choice. On to options…. #1 My favorite. Make your building tall enough to have a full second floor. This will give you greatest usable space and best resale value. By using prefabricated wood floor trusses, you can still have a clearspan floor (no posts below) and it provides an unencumbered space below without columns to dodge. Yes, it will be a greater investment, but one you will probably never regret. #2 Prefab wood ‘bonus room’ trusses. With a steep enough slope (roughly 8/12) you can end up with an eight foot ceiling height at center and a room roughly 10-12 feet in width. For amount of space being gained, this is a fairly costly design solution. #3 Increase sidewall height and use scissor trusses to allow for a central mezzanine supported by columns. While likely to be your least expensive design solution, you will be faced with columns below (unless opting to again add in floor trusses.

 

DEAR POLE BARN GURU: What is the most cost efficient size to build (Can I save money by buying a specific width/ length/ height?) What are the pros and cons of choosing metal frame or post frame? Is it still true that you can add square footage more affordably by building up (adding a second floor)? Can you put a basement under a Barn House? ANNIE in FORT LUPTON

DEAR ANNIE: As you get closest to square, your costs per square foot will decrease slightly. This is due to having less exterior wall surface, although it does not necessarily lend itself best to layout of rooms. For post frame construction, your most efficient use of materials typically comes from multiples of 12 feet in width and length. Work from inside out – do not try to fit your wants and needs within a pre-ordained box just because someone said using a “standard” size might be cheaper. Differences in dimensions from “standard” are pennies per square foot, not dollars. Post frame will always be your most cost effective structural design solution: https://hansenpolebuildings.com/2022/01/why-your-new-barndominium-should-be-post-frame/ Two story is not necessarily your least expensive design solution: https://www.hansenpolebuildings.com/2020/02/barndominium-one-story-or-two/ And yes, fully engineered post frame buildings can include a full, partial or walk-out basement: https://www.hansenpolebuildings.com/2020/02/barndominium-on-a-daylight-basement/

 

DEAR POLE BARN GURU: At what point do the post size change from 6×6 to 8×8, thanks. JEFF in SOUTH HAVEN

Roof Only Riding ArenaDEAR JEFF: If erecting a roof only “pavilion” style post frame building, column dimensions are often dictated by L/d ratio as there is no wind load on totally open sidewalls. “L” is unsupported length of column (grade or top of concrete slab to bottom of truss connection), divided by least dimension of column. Playing a part in this is a factor known as Ke. Ke is determined by fixity of columns. On a roof only structure, columns act as cantilevers (think of a diving board), so Ke = 2.1. Looking at your 5-1/2″ square 6×6, 5.5″ x 50 / 2.1 = 130.95″ (or just under 10’11”). This means at an unsupported length of 11 feet, a 6×6 would fail. Obviously, truss span, spacing, and loads from dead, wind and any snow must be properly factored into equations to be verified by your building’s engineer. Adding an eave sidewall (or sidewalls) with open endwalls will cause bending forces to fail most 6×6 columns at lesser heights.

Spray Foam, Second Floor, and Bending Posts

This week the Pole Barn Guru discusses a reader’s concern about “condensation leaks” when using spray foam, advice on costs of attic trusses vs traditional second floor, and how to stop posts from bending when the wind blows.

DEAR POLE BARN GURU: I am building a 40×50 post frame building as my garage. It will have concrete floors and HVAC. I intend on insulating the entire building (walls & ceiling) with closed cell spray foam. I’ve read a lot about people having condensation leaks, so my question is: Should I wrap the walls (and/or ceiling) with Tyvek or spray foam directly to the metal? Second question is should I use plywood on the roof for better structure and to have something to spray foam to? Any advice is appreciated. Thanks. CHRIS in BLOOMFIELD

DEAR CHRIS: Closed cell spray foam is a great product, however it would not be my first choice for your climate zone. For best results, closed cell spray foam should be two inches or thicker to prevent condensation, and applied directly to the roof and wall steel. Hopefully you have a well-sealed vapor barrier beneath your building’s slab. With closed cell spray foam, you may experience condensation on your building’s interior, so do not be surprised should you have to mechanically dehumidify. Unless specified as necessary on your engineer sealed building plans, you should not add plywood or OSB to your roof system, as it will add unexpected dead loads to your building system.

 

DEAR POLE BARN GURU: Hello. We are wanting to build a 2 story pole barn winery. First floor winery and second would be air-bnb type rental. We aren’t sure if we should use attic truss or complete the build with a traditional second floor. Cost is probably biggest concern. Space second as we know attic truss would be less room. Would you do an attic truss or traditional 2nd floor type build and roughly cost difference between the 2? Building size will be roughly 40×60. Thank you for your time. CRAIG in ROCK CREEK

DEAR CRAIG: If cost is your biggest concern, then having rental on ground floor will be least expensive, easiest to climate control, more accessible for your guests and easiest to fire separate from your winery.

If your only option is to have rental above winery, going with a second floor type build is going to give you far less costly investment per square footage of rentable space.

 

DEAR POLE BARN GURU: I built a pole barn for my r/v a couple of years ago. I used 4×4 for my posts with a metal roof and purlins with no siding. The posts are set 3′ into the soil with no concrete. Posts are 10′ out of the ground. When we get a strong wind the posts bend slightly at ground level allowing the structure to flex. Is there a way to add strength to the posts or do I need to replace with a larger size post and should I embed the post in concrete or will it rot? MARK in BRADENTON

DEAR MARK: I am frankly amazed your building is standing! This response is not to be taken as a replacement for an actual engineered structural design and should be verified by an engineer prior to moving forward. You should replace 4×4’s with at least 6×6 (it may require 8×8’s depending upon design wind speed and exposure at your site) #2 Southern Pine columns pressure preservative treated to UC-4B (there will be a treating tag on one end of each). Columns should be at least 40″ in ground and backfilled with pre-mix concrete.

Open Web Wood Floor Trusses

Prefabricated Open-Web Wood Floor Trusses in Your Future?

Use of open-web floor trusses has steadily increased over this past decade, but there’s a lot of room to grow. Ed Huston from Home Innovation Research Labs (HIRL) recently shared some results from their April 2021 Builder Best Practice Reports on Structural Systems, containing survey results from over 1500 homebuilder participants. 

If a picture speaks a thousand words, the chart below neatly summarizes more than ten thousand words regarding building code impacts. Chart’s green line represents wood I-joists, clearly preferred framing product for non-slab-on-grade first floors and floors above grade.  Market share was actually increasing until 2015, when most states updated to 2012 versions of model code.  In IRC (International Residential Code), Section R501.3 (R 503.1 in later versions of the code), gypsum sheathing was now required on all unprotected wood structural framing unless it was constructed using dimensional lumber.

This code change had an immediate impact on builder preference, with I-joists and dimensional lumber market share moving in opposite directions. Curiously, over time this code change may have actually prompted some builders to finish off basements and use open-web floor trusses to more easily run all MEP (mechanical, electrical, plumbing) in the floor cavity.  Benefits of easier MEP installation in floor trusses is efficiently illustrated in builder-preference in multi-family construction, where market share has also increased over time, as chart below shows.

Since 2017, slab-on-grade single-family construction has surged. While this has taken relative market share from both dimensional and EWP joists,  open-web floor truss share has continued to increase (albeit, slightly). Given dramatic shifts in market share, this national market resiliency of floor trusses suggests in non-slab markets, floor truss market share has increased in recent years.  Chart below shows there is currently significant regional preference for floor trusses.

All of this data suggests there is an opportunity for significant market share growth for floor trusses, given they offer an incredibly efficient and accurate floor framing system utilizing less lumber and easing labor burden for all MEP trades. 

Personally, our now 16 year old post frame shouse (shop/house) utilizes floor trusses to give a 48 foot clearspan over our basketball half-court and provides a comfortable structural system for our second floor living space. All of our plumbing, electrical and HVAC is run through our floor truss system, providing an unobstructed ceiling downstairs.

Planning upon a multi-story post frame building? Open-web wood floor trusses might very well be an excellent design solution.

Wide Clearspan Barndominium Floors

Wide Clearspan Barndominium Floors
Multi-story post frame barndominiums are embracing a great feature found in better stick framed homes – engineered prefabricated wood floor trusses.
Loyal reader RICK in MONTICELLO writes:

“First off, thanks for sharing your knowledge and experience in the blog and answering questions regarding post frame construction with us laymen!
It is very educational and enlightening.

Kicking around ideas currently. Have a 50ish x 80ish building in mind.
And since you suggest working in 6 foot multiples. We’ll go with a 54′ x 84′ two story building.

Thinking about 12′ clear inside height grade level and living upstairs (actually a lake house so to speak).
You mention you have 48′ free spanned with floor trusses.
I’m curious how deep they are and what centers they are installed at.
As I’d like to clear span the 54′ if possible.

My questions and curiosities are:
• You aware of any fabricated wood floor trusses spanning longer than the 48’ you have?
• Would the floor trusses be prohibitive, as far as cost and losing a lot of height due to the required depth they would need to be?

If I free spanned the whole building at 12” centers I’d need 82 of them.
Working from an assumption they would have to be on 12” or 16” centers raises the below questions:

• How is this done in post frame?
• Would I require regular stud walls between each post that first 12’ of building height for the floor trusses to rest upon to transfer the loads to the ground/ foundation?

Hopefully not too lengthy.

Thanks in advance”

Mike the Pole Barn Guru says:
Thank you very much for your kind words, they are greatly appreciated.

With typical residential live loads of 40 psf (pounds per square foot) and dead loads of 10 psf, normally floor trusses are spaced every two feet and their depth will be roughly an inch per every foot of distance spanned. 54 foot clearspan is certainly well within range of prefabricated wood floor trusses.

Even with all of my years as a manager of owner of truss plants, 48 feet is as wide as I have participated in – although for our own personal shouse (Shop/house), we wish we would have gone 12 feet wider (no matter what size you build, it is never big enough). Your added investment, for floor itself, between having a myriad of internal columns, or clearspanning is roughly four dollars per square foot. For what it adds in downstairs usability by not having columns or walls to work around, it is worth every cent in my mind. Add to this it allows for all utilities to be hidden from view and they are a winning combination. As we are providing more barndominiums seemingly every day, we have many clients taking advantage of clearspan floor trusses and have never heard a regret from having done so!

Most usually floor truss ends are supported from beams attached to wall columns. This eliminates having to have load carrying stud walls between columns, as well as thickened slab edges or continuous footings and/or foundations. In order to maintain ceiling heights, your building will have to be made taller. In most instances, adding a few feet to a building’s height is relatively affordable.

How Much is the White Gambrel Barn?

How Much is the White Gambrel Barn?

Reader ALLISON in SALIDA writes:

“I’m wondering what it would cost to build the large white gambrel style barn that’s on your website.  Thanks!”


This building has been featured in places like covers of NFBA’s post frame building design manual and Rural Builder magazine. It is truly a monument to what fully engineered post frame buildings can do.

My lovely bride Judy and I happen to live in this building. We put it up 15 years ago for just under $400,000 (turnkey) and have since added features such as a full sized elevator, custom cabinets, granite countertops, hardwood flooring and tile. We recently had it reassessed for insurance and it came back with a replacement cost right at a million dollars for roughly 8000 finished square feet.

Now not every barndominium has all of our home’s features. All windows are triple-pane low-E gas filled. Primary heat is geothermal radiant in-floor. CHI overhead doors are highest R value available, with openers. Lower level begins with a 48′ x 60′ half court for basketball, with 16′ ceilings. It is clearspanned with floor trusses (yes, 48′) so there are no interior columns. On one side are two 18′ x 24′ offices with built in oak desks, drawers, cabinets. Front office has a vaulted ceiling (slopes from 17 to 11 feet). Opposite side has garage space for my 1950 Chevy pickup and motorcycle, a sauna, bathroom, kitchenette and utility room for hot water heater and water conditioner. There is a finished storage area above this of nearly 500 square feet. Besides our full sized elevator, opposite it is a tube elevator. Also on this level is a mechanical room for a big elevator and directly above it a huge storage closet.

Upstairs we have a 40′ x 60′ living area with my ideal dream kitchen (roughly 20′ x 25′) open to our great room. (Read more about this kitchen here: https://www.hansenpolebuildings.com/2020/05/not-your-average-kitchen-in-a-barndominium/) Master suite is in one corner 20′ x 32′ including an ADA bathroom, laundry and a roll in closet. Above is my wife’s sewing loft. (photos of loft in this article: https://www.hansenpolebuildings.com/2020/03/a-mezzanine-for-your-barndominium/)  All of this level also has 16 foot ceilings. Besides elevators, there is a four foot width oak stairs to access this level from below. We also have a pantry on this floor, large enough for a refrigerator and an upright freezer, plus two foot deep shelves on two walls. There are gas fireplaces in both master suite and the great room.

This is what one does with a 16 foot tall great room wall:




If you ever get to Northeast South Dakota, drop us a note and we will give you a tour.

Designing a Dream Barndominium Loft

Designing a Dream Barndominium Loft

Reader BRIAN in PETOSKY writes:

“ Hi Mike,

Mindi told me to email you my lofted floor question for our project.

To avoid messing with truss-support floors, we were planning to build a full 26×60 main barn with scissor trusses the full length. Then on one end, we would make a 20’x26′ loft. Have the floor joists run parallel to the barn, perpendicular to the trusses, so we’d have 20′ floor joists. These would be supported by the gable end wall and interior posts 20′ in.

We live in a barn home with this configuration and it works well. Allows consistent and uninterrupted ceiling space the length of the barn but still get a 2nd floor in where we want it.

The question is, I guess, what, if anything needs to be conveyed to the engineer for this design? Does it influence anything on the gable end wall? How far apart can the posts be on the interior end? Can stairs be free-standing next to this loft?

Thank you!”

When I used to call on Home Depots, Petoskey was one of my stops. Every time I was there the weather was gorgeous, making it difficult to get motivated to move on to my next appointment!

There are some challenges with running dimensional lumber floor joists to span 20′. Even using #2 & better 2×12 Douglas Fir joists, they would need to be 12 inches on center! Other popular specie of framing lumber has lower MOE (Modulus of Elasticity) values, so will not even begin to approach being able to span 20’. Chances are good there will be both a fair amount of spring to this floor, as well as a non-uniformity in deflection from joist to joist.

For extended reading on floor deflection, please read https://www.hansenpolebuildings.com/2015/12/wood-floors-deflection-and-vibration/

This would be my recommendation – we can use prefabricated wood floor trusses to span 26′. Doing so would allow there to be no interior supports within this 26′ x 20′ area. As long as stairs run perpendicular to the floor trusses, no columns would be needed where they attach. When you and Mindi have your building details finalized, she will relay this information forward on your Agreement with us, so everyone will be on the same page. Further, we send plans to you for a final once over prior to engineer sealing them, just in case.

Floor Trusses, Plywood Floor, and Post Frame Conversion

This week the Pole Barn Guru answers questions about building to FEMA Flood Code for a raised wood floor, use of a plywood floor instead of concrete pad, and finding a certified engineer to help with conversion of pole barn to a home.

DEAR POLE BARN GURU: I have to build according to the current FEMA flood code here in new Orleans which means the house will above grade. I want to purchase a 60X32 pole barn and put a raised wood floor in it. I will be using I-Joists to span the 32′ across but I’m not quite certain how the I-Joist will attach to the rim board and be within code.
Will I have to notch the posts for the rim board and attach the I-Joist with hangers?
Or can I attach the I-Joist directly to the standard installed rim board with hangers? JON in PEARL RIVER

DEAR JON: Just my own personal preference, as I find I joists to be a relatively springy floor – I’d most likely recommend dimensional lumber joists and beams (I joists will not clearspan 32′). If your floor level is significantly above grade, you might want to consider manufactured wood floor trusses as they will give a very consistent floor and you will then have a flat surface below to attach your choice of finishes to.


Design of rim board for size and attachments will be determined by our engineers and spelled out on your sealed plans to ensure structural stability and adequacy. We also run a structural check for your buildings piers against flood loads as well – a requirement for any building within FEMA flood zones.

 

DEAR POLE BAN GURU: Hi, I would prefer a plywood floor instead of a concrete pad. This would be a shop space so it would be subject to moderately heavy loads. The soil is primarily rock,gravel,and clay well drained. If possible what kind of post spacing would work and what size concrete footings would be necessary. The building would be 30×120 Thanks, JOHN in FRANKLIN

DEAR JOHN: A plywood floor can certainly be done. The plywood and its supporting structural members should be pressure preservative treated.

IBC (International Building Code) Section 1607.7.1 “Where any structure does not restrict access for vehicles that exceed a 10,000-pound gross vehicle weight rating, those portions of the structure subject to such loads shall be designed using the vehicular live loads, including consideration of impact and fatigue, in accordance with the codes and specifications required by the jurisdiction having authority for the design and construction of the roadways and bridges in the same location as the structure.

Once actual loading requirements have been ascertained, our third-party engineers can determine most efficient column spacing, as well as depth and diameters of concrete encasement.

 

DEAR POLE BARN GURU: I have an existing pole building with a concrete floor. I wanted to turn it into a living space. I called my local planning/permitting dept. the person that is head of area planning said I can do this but only if I have it certified by an engineer. She did add in that she had no idea who would do this kind of work but she thinks it would be expensive. I cant figure out what I am too certify. The building or my drawings nor can I locate an engineer in my area. I have been told that there are a lot of buildings here that have been converted to a home I just can’t find anyone who has done so it is difficult to get any information. You would think planning could guide me but they don’t have the knowledge so I’m reaching out to anyone who has went through this in the state of Indiana and may know the laws. Thanks in advance. KIM in METAMORA

DEAR KIM: Your local Planning Department director gave you good advice. Most post frame (pole) buildings are designed for Risk Category I occupancies (if they were designed at all) – meaning if they collapse chances are good no one will be in them when it happens. They use lower wind and snow loads than what is required for residential purposes.

To find an Indiana engineer go to www.nfba.org. In the upper right corner click on FIND A PROVIDER.  On the left of the page under “What are you looking for?” select “Designer”, enter your state and click on Find. This will give you several options to choose from.

 

 

 

 

How Tall Should My Eave Height Be for Two Stories?

How Tall Should My Eave Height Be for Two Stories?

I have learned a couple of things in 40 years of post frame building construction. One amongst these is – most people are dimensionally challenged (no offense intended).

As much as some folks would like to believe, you cannot legitimately put two full height finished floors in a 16 foot eave height post frame building.

Now fear is a strong motivating force. Perhaps it is fear of a building “appearing” too tall or of OMG it will be too expensive keeping people from considering what it actually takes to create a Building Code conforming two story building.

Back in my early roof truss selling days, I had two clients who had relocated from New York state to North Idaho and were building new homes on adjacent properties. Both of them (and their spouses) were relatively short of stature and had decided to build their homes to Code minimum ceiling heights of seven feet. Their reasoning was it would be less space to heat and cool and they could chop two studs out of 14 foot long materials.

Missed in all of this was how much sheetrock waste would be created!

Sidebar – modern Building Codes allow seven foot ceilings under International Residential Code (IRC), however IBC (International Building Code) requires six more inches.

Now I am vertically challenged at 6’5” and would feel very uncomfortable with seven foot ceilings. In my own personal shouse, most ceilings on both floors are 16 feet high!

In today’s exciting episode we will learn together how tall eave heights should actually be to give reasonable ceilings in post frame buildings.

Setting a “zero point” at exterior grade (and assuming slab on grade for lower floor), top of slab will be at +3.5 inches.

To create eight foot finished ceilings requires 8’ 1-1/8” (allows for 5/8” sheetrock on ceilings).

In order to be able to run utilities (e.g. plumbing and ductwork) through second floor supports, I highly recommend prefabricated wood floor trusses (https://www.hansenpolebuildings.com/2020/01/floor-trusses-for-barndominiums/). Generally truss height will be about an inch for every foot of clearspan with a 12 inch minimum. 

In my own shouse, we have a 48 foot clearspan floor over our basketball court. And yes, those trusses are four feet deep!

Allow ¾ inch for OSB floor sheeting.

6-1/16″ for heel height of trusses with 2×6 top chord at 4/12 slope (provided you are using closed cell spray foam insulation between purlins)

If using blown-in insulation truss heel height should be R value of insulation divided by 3 plus 2″ to allow plenty of eave to ridge air flow above insulation.

At a bare minimum an eave height of 18’ 0-9/16” will be needed to create those eight foot ceilings.

Barndominium: One Story or Two?

Barndominium: One Floor or Two?

Welcome to an ongoing debate about whether it is more cost effective to build a one story or two story barndominium. Commonly I read people advising two stories is less expensive than a single story. Reader TODD in HENNING put me to work when he wrote:

“I’m curious why “Going to multiple stories will be more expensive than building the same amount of finished square footage on a single level”? Everywhere I read it says it’s cheaper to go up than out. For example wouldn’t there be more cost with bigger footprint of concrete, in-floor heating, roof trusses, and more steel on roof? Thanks.”


Mike the Pole Barn Guru writes:

It turns out Todd has requested a building quote from Hansen Pole Buildings, so I was able to work scenarios from his requested 40 foot wide by 48 foot long scenario. I arbitrarily merely doubled his building length when looking at a single story. It may have been more cost effective to have done this exercise by going greater in width and less in length (as one gets closer to square, there is less exterior wall surface to side, insulate and drywall).

Included were colored steel roofing and siding, commercial bookshelf wall girts to create a wall insulation cavity (https://www.hansenpolebuildings.com/2011/09/commercial-girts-what-are-they/), dripstop/condenstop under roof steel to minimize or eliminate condensation (https://www.hansenpolebuildings.com/2017/03/integral-condensation-control/), ceiling loaded energy heel trusses (https://www.hansenpolebuildings.com/2012/07/raised-heel-trusses/) with ceiling joists for sheetrock, 24 inch enclosed vented overhangs, vented ridge and one entry door. In the two story version I added floor trusses and a four foot wide set of stairs.

In order to maintain eight foot finished ceiling heights, two stories requires a 21 foot eave and single story 10 foot. Engineered plans and delivery were included.

I did not include materials for a bearing wall at the floor truss center. Features listed above ran roughly $6000 more to go two floors. Also, with the two floor version, you will lose 50 square feet of usable floor on each level due to stairs.

In this particular instance best overall buy could come down to what you pay for your slab and in-floor heating. Labor to erect a single story will be less expensive (I would predict at least a $3000 difference). Some other thoughts – two story has 1/2 as much attic insulation and 45% more wall insulation. Two story (excluding interior walls) has 30% more wall to drywall. This added exterior wall surface will likely result in more windows.

Personally, I own three multiple floor post frame buildings, these are my considerations:

Accessibility roughly 10% of all Americans will spend time in wheelchairs in their lifetimes. My wife is a paraplegic and we cannot get into one of her son’s homes because it is a split entry. Two of her other sons have built ramps for her, but they also have multi-story homes and it greatly limits areas she can have access to. In our own shouse (shop/house), we added an elevator after her injury (elevators are NOT cheap).

Stairs in general – you are probably much younger than my 62 years, going up and down stairs gets to be a chore as we age.

Heating and cooling – unless each floor is on their own system, one floor is always either too cool or too warm. I put one of my own buildings on two separate heat pumps for this very reason.

In conclusion, whether one story or two, go with what best fits your wants and needs and your property. Love what you build and it will result in a happy ending.

Footing Size? A “Reverse Barndominium?” and a Loft Bedroom?

This week the Pole Barn Guru answers questions about the footing size for an open car porch and why a person should use a registered design professional, building a “reverse barndominium” where one build a post frame shell around an existing structure, and if one can build a loft bedroom in a footprint of 20’x 30′.

treated postDEAR POLE BARN GURU: I am building an open car porch, the inside will be connected to another building and on the outside I planning on using 3 – 8 inch x 8 inch x 8 feet posts 12 feet apart. The open car porch area is 24ft x 24ft and the roof is 6 on 12 with 2 x 6 rafters and joists landing on the outside plate. What size footing will I need for each pole? JAY in MORGAN CITY

DEAR JAY: This is a question best answered by the Registered Professional Engineer who designed your building, as he or she will be able to do a complete analysis including soil bearing capacity, design wind speed and wind exposure. With columns only eight feet long, I am guessing you are planning on using wet set brackets into concrete piers https://www.hansenpolebuildings.com/2019/05/sturdi-wall-plus-concrete-brackets/. I would not be surprised to see piers up to three feet deep and two foot diameter in order to adequate resist uplift forces.

DEAR POLE BARN GURU: Are you aware of anyone ever building a “reverse barndominium”? Usually barndominiums are built shell (outside walls) first then the interior, but what about building entirely around an existing structure? I really want to buy this historic house built in 1861. It is currently gutted down to the dirt floors, needs a roof, garage, etc. Why not just enclose the whole thing and DIY the interior without dealing with the outside elements? The primary structure is 19’x38′, but the side structure is an additional 20′ (39′ total wide) with a 6/12 roof. The eave height is 15.5′ and about 20′ at the ridge. The basement is about 4′ deep. I could go 42′ wide with a structure and have the exterior posts completely outside of the current footprint. The lot is 60’x150′ and I’m looking at a 40×80-ish building with a second story.

Is this feasible or have I succumb to the Dunning-Kruger Effect? I have attached an image of my sketchup drawing to give a better idea of my concept.

Thank you great guru. I love your philosophy and transparency throughout your blog posts. I have learned a lot at the cost of otherwise being productive at work. JAMES in WESTON

DEAR JAMES: Thank you very much for your kind words, although I am not as certain your employer would be as happy with me 🙂

Perhaps surprisingly, you would be far from the first person to attempt such a project. Is is entirely doable and actually becomes very similar to what people do with a PEMB (Pre-engineered metal building aka red iron) or a weld up barndominium, where a shell is erected and a building is built inside of a building. You just happen to have your insides prebuilt!

Outside of my loyal readers, most have never heard of the Dunning-Kruger Effect (https://www.hansenpolebuildings.com/2015/01/dunning-kruger-effect/)

 

DEAR POLE BARN GURU: I’m interested in a residential building approximately 20ft x 30ft. How tall would the walls need to be to include a loft bedroom with headspace to approximately 4ft from the sides? JUDE in DUPONT

DEAR JUDE: I will answer your question from a standpoint of you getting best value for your investment – meaning using both floors from wall to wall.

Assuming a concrete slab-on-grade for main level, bottom of framed ceiling would be at 8′ 4-5/8″ this allows for 5/8″ drywall on ceiling and 1/2″ at bottom to be able to account for any variances in your building slab and to keep drywall from soaking up moisture from floor, plus 3-1/2″ for actual thickness of a nominal four inch thick slab.

I would recommend using premanufactured wood floor trusses between floors (https://www.hansenpolebuildings.com/2014/09/floor-trusses/). Plan on a 20 inch thickness, plus 3/4″ for subflooring and 8′ 1-1/8″ putting bottom of roof trusses at 18′ 2-1/2″. In Pennsylvania I would recommend R-60 blown in attic insulation (just under 20 inches thick), resulting in needing a 20 foot eave height.

 

 

Floor Trusses for Barndominiums

In my last article I discussed limiting deflection for barndominium floors. Today I will take this one step further with a floor truss design solution.

Most of us don’t think too much about floors we walk upon – unless they are not level, squeak when we walk on them, or are too bouncy.

Traditionally wood floors have been framed with dimensional lumber (2×6, 2×8, etc.), usually spaced 16 inches on center. Often floor joist span limitations are not based upon lumber strength (ability to carry a given load), but upon deflection criteria. Building codes limit floor deflection to L/360, where “L” is span length in inches.

“Stiffest” (by MOE – Modulus of Elasticity values) commonly used framing lumber is Douglas Fir. A #2 grade Douglas-Fir 2×12, 16 inches on center will span 18’1” when carrying standard residential loads. An L/360 deflection event, would cause the center of one of these floor joists to deflect as much as 6/10ths of an inch!

Lumber is organic, so it varies in consistency from board to board. It also varies in size, and it is not unusual for a dimensional variance of over ¼ inch, from one end of a board to another. Combine this with probability some of these boards will be crowned with bow down and it means an uneven floor will result.

One of our friends lives in a fairly new home. In a hallway between her kitchen and sleeping areas, there is a good ½ inch dip in her floor – more than noticeable when walking across it!

I first used floor trusses in my own post frame shouse (shop/house) 25 years ago. My trusses were designed so they were only 1-1/2” in width (most spans up to this can be done with a 3-1/2” width), but these 30 foot floor trusses are only 24 inches in depth. They allowed me to create some unique interior areas, without a need for interior columns or load bearing walls.

When we built our post frame barndominium in South Dakota, we utilized floor trusses again – here to span 48’ (yes 48 feet)! We live upstairs in a gambrel building, with a clear-spanned half-court basketball court size garage/shop downstairs!

A few years ago, our oldest son Jake needed a new post frame garage at their home near Knoxville, Tennessee. His mom convinced him this plan would be so much better with a mother-in-law apartment upstairs. We used 4×2 (2x4s turned flat) floor trusses to span a 24 foot width!

I’d forgotten how fast a trussed floor can be done – until Jake ordered them for a second-floor  addition he put on his home when he moved back to South Dakota. In a matter of just a couple of hours, I framed this entire 24 by 32 floor by myself and was ready for sheathing. All ductwork and plumbing can be run through open truss webs, making for nice clean ceilings downstairs.

Considering a full or partial second floor in a post frame building? Don’t want posts or bearing walls down below to prohibit full space utilization? Then floor trusses may be your answer.

Make sure to allow adequate height for truss thickness. As a rough rule-of-thumb, I plan upon one inch of thickness, for every foot of span. While it will nearly always be less, it is better to design for having a couple of extra inches, than not enough.

Gambrel Barndominium Done Differently

What I Would Have Done Differently With Our Gambrel Barndominium

Pole Barn Guru BlogWhen we built our gambrel roof style barndominium 15 years ago we were in a position financially where we could have done most anything we wanted to. Our property was over two acres in size, so available space was not a determining factor. After having lived in it every day for going on four years, I have realized there are some things I would have done differently. For sake of brevity, I will only discuss main clearspan portions of our barndominium (it has 18 foot width sidesheds).

Footprint

Our center portion is 48 feet in clearspan width and 60 feet deep. Whilst this sounds really big, I wish we would have gone 60 feet wide and 72 feet deep. There is just never enough room and a portion of our half-court basketball court has been taken up with a workout area. Start parking a few vehicles inside and even smaller grandkids are looking for space to dribble and shoot the basketball.

Downstairs Height

16 foot high ceilings might seem like a lot. Doing it again I would go to 20. Makes playing basketball easier for those three point shots. At 20 foot, ceiling would not have been perfect for volleyball, but it would have made a serviceable practice area (given a larger footprint): https://www.hansenpolebuildings.com/2013/09/pole-barn-11/.

Floor Trusses

Yes we could have spanned 60 feet, we just would have had trusses about five feet in thickness. I would have specified a lesser deflection than our current L/360 however (read about floor deflection here: https://www.hansenpolebuildings.com/2015/12/wood-floors-deflection-and-vibration/). I also would have installed a diagonal (top chord to bottom chord) bracing system every 12 feet along building width, tying three trusses together across four feet. This would have further reduced deflection by spreading loads across a wider portion of the floor system.

Knee Walls

Our gambrel trusses are set directly at floor level. In order to have some semblance of sidewalls, we placed a knee wall in four feet from each side, reducing our usable width to 40 feet. While this made our space more functional, ever try to hang pictures on a four foot tall wall? Doing it again, I would opt to raise trusses up either four or eight feet above the floor level. Latter of these would have given wall to wall usable space as well as a more standard wall height.

Upstairs Ceiling Height

We have a 16 foot high ceiling now. While this works, it does make for a short ceiling in my wife Judy’s craft/sewing loft above a portion of our master bedroom. With a 60 foot span, we could easily have had 10 foot ceilings both above and below the loft. Of course Judy would have had to have found a 20 foot tall Christmas tree! (and she would!)

Whatever size barndominium you decide to construct – it will not be large enough. At a minimum I would encourage going no less than 10% greater in space than you think you need. Ready to get serious about planning your new barndominium? Call 1(866)200-9657 to get started now!

Multi-Story Pole Barns

Multi-story Pole Barns
Hansen Pole Buildings has developed a reputation for taking potentially challenging post frame (pole barn) building projects and developing them from concept to fruition. This leads many clients, with an interest in multi-story pole barns, to our doors.

Gambrel roof pole barnMy own post frame building home, along Lake Traverse South Dakota side, features both a second floor and a mezzanine (partial third floor) where my lovely bride has her sewing and quilting projects in various stages of assembly.

Our house Northeast of Spokane has two multi-story post frame buildings. Both of these happen to be constructed upon sites with a significant grade change. One of them has a 22’ x 24’ garage, with a studio apartment below and an office above (located in attic bonus room trusses). Tallest of these has been located near property rear. 40’ x 36’, it has a three vehicle garage space in lowest level, a full second floor, as well as a third floor (and a rooftop deck).

More reading about this building can be found here: https://www.hansenpolebuildings.com/2012/02/grade-change/.

Reader K.F. in ONTARIO writes:
“I would like to build a pole barn with a 10’ lower level and an 8’ upper area, with the dimensions 30×48. I would expect that the poles would need to be around 19-20’ long (above grade). That seems like a very tall pole (3x-2×6). What is the best way to build two levels and how does the upper floor go in?”

In my humble opinion, multi-story post frame buildings should always be designed by a Registered Design Professional (RDP – architect or engineer). Risks are far too great for an average person to safely and competently design a multi-story pole barn.

As to heights, one needs to look to how they desire to best utilize spaces being created. If interior columns are not an issue, a floor thickness of around a foot should be allowed for between levels. Don’t like having to maneuver around posts? Then floor trusses (https://www.hansenpolebuildings.com/2017/01/wood-floor-trusses/) might be a design solution. Roughly allow about an inch of truss depth for every foot of floor being spanned. Obviously, higher than residential weighted floors will necessitate a need for greater truss thickness.

Many multi-story post frame buildings are used residentially. If your proposed building will be climate controlled have roof trusses designed with raised heels (https://www.hansenpolebuildings.com/2012/07/raised-heel-trusses/) in order to provide full thickness of insulation from wall-to-wall. In colder climates, with a R-60 attic insulation recommendation, raised heel trusses could be as deep as 22 inches!

With a clearspan floor and raised heel roof trusses, ceiling heights desired by K.F. could result in sidewall heights of over 22 feet.

Not to fret – glu-laminated technology has allowed for one piece columns to be manufactured up to 60 feet in length. My own South Dakota building has columns as long as 50 feet.
As to how an upper floor goes in, this is where RDP experience comes into play. I have witnessed far too many instances of poor design practices of second floors without an engineer’s knowledge involved.

Looking for a multi-story pole building? Look to a post frame building kit supplier who works with a RDP to provide engineer certified plans for your building. Much better safe and standing, than flattened.

Pole Building Rooftop Decks

Post Frame Roof Top Decks

Question: Can decks be constructed upon a post frame roof top?

Answer: Yes, and it may prove far simpler than one might expect.

Our typical request from clients generally revolves around having a very slightly sloping roof and to use EPDM (ethylene propylene diene monomer) rubber as roofing over plywood. This solution might work, however very slight slopes tend to be problematic.

One of my own post frame buildings, located lakeside at Newman Lake, Washington, happens to have a rooftop deck. This particular building’s location happens to be perched upon the rear (farthest distance from our lake front) of our steeply sloping lot. The 30’x36’ building with a 10 foot wide enclosed shed off left sidewall has a total footprint of 40’x36’.

This building happens to be tall. Very tall – as in 40’6” from grade to roof peak. Besides garage level, it has two floors above. Upper floor clearspans a 30 foot width with floor trusses. This level also has a vaulted ceiling, provided by scissor trusses (I’ve written about this particular building’s roof trusses previously: https://www.hansenpolebuildings.com/2018/08/post-frame-scissor-trusses/).

Smoky MountainsKnowing this building would be very tall, and there would be a 180 degree panoramic lake view, it was planned all along to have a rooftop deck.  Adding to design challenges, we wanted this deck to be capable of supporting weight of a hot tub and its occupants!

This deck would cover an area between pairs of roof trusses/sidewall columns, a space of 12 feet along the building length. Sidewall columns were extended through the roof steel, to support glu-lam beams. These glu-lam beams had their opposite ends supported by a roof truss system designed to carry concentrated deck loads (along with snow and ceiling loads).

Where columns and glu-lams penetrated roof steel, a thick, high quality rubber and acrylic elastomeric roof coating formulated especially for steel roofing was used. After over 20 years of service, no leaks have been experienced. Other solutions may have been to use EPDM rubber boots and flashing to seal penetrations.

Interested in roof top entertaining upon your future pole building? It can be done, just ask your Hansen Pole Buildings’ Designer.

 

Friends Don’t let Friends Stick Frame

Oh the misconceptions arm chair engineers have when it comes to what can be done with post frame construction. For the most part – if you can imagine it, we can design it! Here is a case in point shared by our friend Neil:

DEAR POLE BARN GURU: I have limited floor plan on my lot, looking at a 24w x 64L size post frame building, 14 or 16 foot open height workshop area for lift and heavy truck work and a full second floor for an office, light storage, etc, (40psf live load). This would put the sidewalls between 20 and 22 feet. I believe I can clear span the 24 feet with modern engineered joists, but at this point does it still make sense to use post frame construction? Friends of mine have concerns about column loads, footing capacity, and suggested to just pour a full foundation, stick frame with it to 16′ and build a second floor and go up from there and put trusses on. NEIL in CLEVELAND

DEAR NEIL: Not only is post frame construction going to be the most practical solution, it will also be the most economical. Having to pour a continuous foundation is painfully expensive (read more here: https://www.hansenpolebuildings.com/2011/10/buildings-why-not-stick-frame-construction/). Another issue with trying to stick frame a 16 foot high wall – the Building Codes will not allow it unless you have an engineer sealed design, further adding to the expense.

While “I” joists might be able to span the 24 feet successfully, it will probably be much more practical to do with prefabricated wood floor trusses (https://www.hansenpolebuildings.com/2014/09/floor-trusses/), as they can be designed to limit deflection (read about deflection here: https://www.hansenpolebuildings.com/2015/12/wood-floors-deflection-and-vibration/)  and afford the ability to run duct work and plumbing through the webbing. In order to get everything you want to fit in your new building, you are probably looking at an eave height of around 27 feet. You will want to be talking with your Planning Department to see if there will be height restrictions.

Post frame building columns are very strong in the compression (weight bearing) direction and getting columns 32 feet long is not a problem, as glue-laminated columns are easily available in this length. Footings can be easily designed to support all of the live and dead loads which will be imposed upon them by your new post frame building.

On your second floor, if you intend to go with a 40 psf (pounds per square foot) live load, you will be restricted to residential use. Office space requires 50 psf and light storage is 125 psf. Design the floor for what you will actually be using the space for and have no regrets later!