Tag Archives: glulam

Tin Sheet Ceiling, Glulaminated Columns, and Wood on Grade

This week the Pole Barn Guru answers reader questions about adding tin sheets to the underside of trusses with insulation added, the use of glulaminated columns over rough sawn 6×6’s, and pros and cons of wood on grade vs concrete.

DEAR POLE BARN GURU: I am looking at installing metal sheeting on the ceiling in my pole shed. I would like to screw the tin sheets to the underside of the trusses. I do plan on adding about 18 inches of insulation on top of the metal ceiling. Do I need to install purlins to fasten the tin to for extra support of the tin sheets? Thank you. KEVIN in MANSFIELD

DEAR KEVIN: I know of several builders who would think nothing of screwing steel liner panels to truss bottom chords spaced eight and even nine-foot on center. Personally, I feel like there is going to be some noticeable deflection at those spans, especially as liner panels tend to run towards 29 gauge’s thin side. It is also, obviously, going to depend upon what is being used for insulation. Blown in fiberglass is very light, cellulose or rock wool will be roughly three times as heavy.

In summary, my comfort zone for liner panels is probably in having supports every four to five feet.

 

DEAR POLE BARN GURU: I am looking to build a post frame home utilizing wet set brackets. The cost of laminated 4 ply 2x6s is quite a bit more than solid 6×6 posts. What are the big differences between the two that I should be concerned with? Is one more structurally sound than the other? Thanks! NORMAN in WELLS

DEAR NORMAN: Actually, a typical 3 ply 2×6 true glu-laminated column, will be stronger than a solid sawn 6×6. This is especially true in Western states where solid sawn columns are typically Hem-Fir. Hem-Fir has a lower Fb (fiberstress in bending) than many other popular wood species. Now, some good news for you….Hansen Pole Buildings is expanding to provide metal connector plated trusses, as well as lumber and glu-laminated columns. In buying direct from a well-respected sawmill for lumber and a glu-laminated column manufacturer, we are cutting out scores of middlemen, resulting in us being able to deliver better quality materials, with shorter lead times and at competitive prices. Pricing should be available in roughly 30 days with deliveries to begin around mid-May.

 

DEAR POLE BARN GURU: I studied intently your post about wood on grade floor as an alternative to concrete hydronic slab on grade. Also reading elsewhere about radiant hydronic ceiling using 2′ wide thin panels (Messana.tech) that could install nicely onto ceiling purlins/girts 24″ o.c. on bottom chord of trusses. Do you have any thoughts about that combo to create an affordable 3BR 1250-1500 ft2 pole frame house at rural IA-MN zone 6. New houses within 25mi radius of Roch MN that size sell well at $250K or up. But when median household incomes in small towns like ours are at $50K, that is NOT affordable. Only farmers moving to town can afford a new stick built for $300K or more. BRIAN in LEROY

Gambrel roof pole barnDEAR BRIAN: I find concept of a plywood floor as opposed to slab-on-grade very appealing personally. Many years ago I lived in one side of a rental duplex in Coeur d’Alene, Idaho. I mention it as this duplex had radiant ceiling heat. It was fabulous as long as you were not under something (like your legs when sitting at a table). As heat rises, I would look towards radiant floor heat as my first choice (have it in our barndominium on South Dakota side of Lake Traverse). Fully engineered post frame, modest tastes, totally DIY, move in ready, budget roughly $70-80 per sft of floor space for living areas, $35 for all others. Does not include land, site prep, utilities, permits. If you hire it all done by a General Contractor, expect to pay 2-3x as much.

Laminated Columns

What every post-frame builder should know about laminated columns

By Sharon Thatcher (Frame Building News January 2021)

The single most important element to a building’s foundation is its columns. They’re the legs that hold the building upright. As post frame has evolved, it’s only natural that methods to improve the strength of those legs would be part of its evolution.

For a comprehensive explanation of laminated columns, the second edition of the NFBA Post Frame Building Design Manual contains a chapter by David R. Bohnhoff, Ph.D., University of Wisconsin-Madison. Bohnhoff has been breaking columns in the name of science since the 1980s. In fact, he got the Ph.D. behind his name after writing his doctoral thesis on laminated columns, which led to the standards for design and manufacturing of mechanically laminated columns.

Frame Building News offers a more generalized explanation here, relying on NFBA members who have embraced the technology in manufacturing, along with other industry insiders.

There are many ways to laminate columns, but the industry keeps them confined into two basic categories: mechanical fastened (mechlam) and glue laminated (glulam). Mechlams utilize nails (a popular type of mechlam called nail-lam) and/or other mechanical fastener components (screws, bolts, and/or metal plates) while, as the name implies, glulam utilizes glue or a glue-like adhesive.

 

Bohnhoff’s chapter 8 clearly defines each and breaks down all the variations of mechlam. Because nail-lam and hybrid versions of nail-lam (including the use of both nails and glue) are the most recognized mechlam products in use today, this article makes use of the commonly used term “nail-lam.”

Arguments rage over which is best, but properly manufactured, both nail-lam and glulam trump solid-sawn timber in certified testing labs for consistency of strength, straightness, and uniformity of preservative treatment.

A glulam typically has good bending strength regardless of which column face is loaded, so it has advantages in applications in which the column does not have lateral support like that provided by wall girts. Such is the case with many interior columns and columns supporting the open side of a building. Nail-lam columns can be used in such applications, but typically need additional bracing such as faceplates to prevent buckling or bending around their weak axis.

The environmental and economical advantages of laminated columns were addressed in an article, “Engineered Wood Products STRETCH Post-Frame Possibilities” by Robert Clark, APA, Engineered Wood Association, which [at the time of publication was] housed on the NFBA website. “Engineered wood posts can use smaller diameter trees harvested from a managed forest dried to a low moisture content,” he wrote. “These dimensionally stable products resist deformations such as warping and twisting. And, because of the dispersal of natural growth characteristics such as knots and wane, they exhibit superior strength over solid-sawn posts.”

 

Just as today’s solid-sawn timbers, laminated columns are treated for preservation to endure the ravages of natural deterioration. While some manufacturers treat the entire finished post, many manufacturers treat the individual laminations prior to gluing or nailing. In this method, typically only the lower section of the post that will be installed in the ground is preservative-treated, which can be cost-effective and provide increased chemical coverage area at the interior of the post.

If you are considering the switch from solids to laminates, or you are questioning your choice of lamination, Dale Schiferl of Timber Technologies, Colfax, Wisconsin cautions: “Not all laminated columns are created equal.

 

“I have seen about a dozen different ways to ‘laminate’ a column in the past 20 years,” he said. “Everything from truss plates, to nails, to finger joints, to butt joints, to construction adhesive with nails, to gusset plates, to screws, to wire rivets, to bolts, and totally glue laminated. I have also seen a wide array of lumber utilized, from the highest grade of MSR and Select Structural lumber to the lowest grade and species of #2. Unlike other structural wood components, column manufacturing is like the Wild West, standards are not enforced. Basically everybody does what works best or cheapest for them.”

A lot of engineering goes into the proper design of laminated columns, Schiferl went on to note. “It should be important that specifiers and builders understand there are ‘standards’ to how columns are built up, be it nails or glue, and they ask for some verification that the products they are using follow the standards. The standards were established through testing by smart people like Dave Bohnhoff and Harvey Manbeck and through efforts of the NFBA. It does not make it OK to build up a column however one chooses just because the standards are not enforced,” he said.

Mike Burkholder, P.E., Ohio Timberland Products (OTP), Stryker, Ohio, echoes that sentiment. His company has been making nail-laminated columns for more than 20 years. Although he explained that, “there had been people nailing boards together for years,” Ohio Timberland Products began testing at Virginia State University in 1994 in the lab of Dr. Frank Woeste. By then, Bohnhoff was testing nail-lam and eventually created what Burkholder calls the “Bible” or “Genesis” of standards for the industry, but as far as developing its own production standards, OTP blazed its trail through the Woeste lab.

The price of laminated columns is one that arises on a daily basis for laminated column manufacturers like Elmer Sensenig, Richland Laminated Columns, Greenwich, Ohio.is articleblished in the January 2021 edition of F

“Laminated columns are very comparable [to solid-sawn columns],” he tells his customers. “For 20′ and longer, they’re actually less costly than a 6″ x 6″. The shorter you go, 14′ to 16′, the laminated columns are a little bit more.” Because builders typically need a combination of sizes, Sensenig stressed, “price is normally not an issue because it averages out.”

This article was published in the January 2021 edition of Frame Building News.

 Click to download the entire issue (free).

Why Not Use 6×6 or 8×8 Posts Up North?

Reader DARRELL in LUCEVILLE asked this question and included photo below.

While this photo is not of a Hansen Pole Building, I can comment upon it. Featured in this building photo are glulaminated columns – they are a great product, high strength to weight ratio, straight, highly resistant to warp and twist. They are strong because they are most generally manufactured from high strength materials, most three ply 2×6 columns have a Fb rating (Fiberstress in bending) of roughly 1900 psi. Your local lumber dealer or big box store will gladly sell you a 2×6 #2 with a Fb rating of anywhere from 1000 to 1170 (depending upon lumber species, with SYP lowest and Douglas Fir highest), so a glulam’s three members start off being about equal to five every day individual 2×6.

What about strength comparisons to solid timbers?

To determine bending strength of a member, multiply Fb X Sm (Section Modulus). A three ply 2×6 glulam would be 1900 X 19.86 = 37,738 in-lb. A 6×6 #2 SYP would be 850 X 27.73 = 23,570 in-lb. A 6×6 #2 Hem-Fir (treated species of choice in Western U.S.) has a base Fb of 575 with a reduction for incising of 20% (X .80). 575 X .80 X 27.73 = 12,755 in-lb.

Clearly, when picking for strength, glulam columns are going to be a better choice.
When it comes to practicality on a jobsite, would you prefer to carry a 20 foot long glulam weighing roughly 100 pounds, or hefting a same length 6×6 tipping your scale at 180 to 300 pounds? Not much to think about there!

Glulams columns are more prevalent in northern states due to locations where they are manufactured – primarily Pennsylvania, Ohio, Wisconsin and South Dakota. We do offer them as an option on any Hansen Pole Building. Give a call to a Building Designer today at 1(866)200-9657 for your post frame building design solution.