Tag Archives: plywood

Pole Barn Garage Wood Floor

Pole Barn Garage Wood Floor

Reader CLIFFORD writes:

“Hello,  I found where you had answered a question about a wood floor in a garage while I was searching the web asking “Wood floor in a garage?”.  Let me explain, I am a disabled veteran living on a fixed income.  I have a blood cancer as a result of being exposed to the toxic smoke of the burn pits in Afghanistan and Iraq.  I was told that once I started treatment I would live 7 or 8 years, 10 if I am lucky, I have been on treatment now for about 3 years.  I bought my farm from my dad.  I have a double wide home that is set up on a basement (with garage door), the problem is it is only 7’ tall with a 6 and ½ ‘ door.  I don’t have anything that fits.  I plan on building a 24 by 24 workshop/garage.  I will build it much like a pole barn, for the simple reason I can build in phases.  One pole at a time so to speak, as money allows.  I am looking at wood for the floor, I know in the really old days wood floors were common.  The problem I am concerned about is the weight limit.  I have a Mack Truck that was given to me, basically a toy, but a subsidiary of Mack Trucks rebuilt it so it is real nice.  I need the floor to be able to support this.  My plan is this:  2×8 treated floor joist, 12” on center.  Topped with 2×8 lumber, then topped with ¾” T&G plywood – to get it smooth.  To be honest I will probably have treated plywood on the bottom of the joist and fill in between the joist with what they call around here waste rock.  Then top it off with the 2×8’s and plywood.  The joist would run from front to rear, allowing a chance for the load to be right on a joist.  I expect it would be about a 10,000 to 12,000 pound load spread on 6 tires, I am guessing about a 10” x10” patch for each wheel, the heaviest load would be the front wheels.  I am not asking for official specs, just a professional opinion.  I realize cost wise it could probably be built with concrete cheaper, but I have to build it a piece at a time, and to be honest it may never get finished.  Thank You.”

Thank you for your service sir.

There is an even easier method (plus more cost effective) and if you are not going to climate control, you can omit directly under plywood insulation: https://www.hansenpolebuildings.com/2022/03/post-frame-plywood-slab-on-grade/

Why Self Engineering is Risky

Reader MICHAEL in EAGLE POINT writes:

“I want to span 18 feet on a shed roof with any pitch necessary should I nail two 2x 6 rafters together and place this in the center and use 9 foot 2×6 purlins. The shed will be 18 X 18. Do I need to nail two 2×6 together for the two outside rafters?

All spans are clear span no center post The high side of shed is up against an existing building the low side will be new post and beam or posts with the rafters bolted to the post

This is a shed with only two walls. The existing high side as explained and the new post and beam side as the low side The two other sides will be open to drive under.

I plan on three or four posts on the low side depending on whether I use beams post to post underneath the rafters Or Bolt the rafters to either side of the post and eliminate the beams.

Since I’m using 2 x 6 purlins between the rafters I wondered if I could span the 18 foot length using two 2 by sixes (nailed together )For rafters. Since I’m using purlins I thought I could only have the rafters at each end and one in the center keeping in mind it is only a metal roof.”

Mike the Pole Barn Guru responds:
This sort of armchair ‘engineering’ is far too typical of what I read in social media groups.  When designs such as what is proposed are utilized, and buildings fail, folks are quick to point fingers as pole buildings being responsible, rather than lack of proper engineering design being our true culprit.

Please confirm this with your Registered Professional Engineer who will be sealing your building plans. Most of Oregon (your part included) has a minimum roof live load of 25 psf (pounds per square foot).  For sake of discussion, we will use 3 columns spaced nine foot on center along low and high sides and a five psf dead load (just in case someone decides to add plywood or OSB under a reroof some day).

Moment force = (25 + 5) psf x (9′ distance to next rafter / 2 [1/2 distance to next rafter] x 12″) x 18’^2 [ span of rafter] / ( 8 x 1.15 [Cd = duration of load for wood]) = 57,052.17 in-lbs

57,052.17 / (2 x 31.6406 [Section Modulus of a 2×12]) = 901.57 Fb [fiberstress in bending] required

2×12 #2 DougFir has a Fb of 900, so given bearing width at each end would most likely be approved by your engineer.

For rafters I would recommend a 2 ply 2×12 #2 DougFir on each end, and at center use two rafters on each side of the column. Connection at ends must be capable of withstanding 1215# so a single bolt will be nowhere near adequate (again, your engineer will properly design and detail this connection). Your thought of nailing two 2×6 together would be woefully inadequate (and would be over 300% over stressed probably failing during construction).

Hiring a Registered Professional Engineer is not an expense, it is an investment.

Answers for Brian’s Barndominium Builder

Answers for Brian’s Barndominium Builder

Should you have missed yesterday’s episode, please click back to it using link at bottom of this page – it will make more sense as well as being more entertaining!

Hello Brian ~

My Father and his five brothers were all framing contractors, so I was raised in a world of trusses two foot on center and vertical stud walls. Even in my first few years of prefabricated roof trusses (as a truss designer/salesman/manager) – we used to laugh when builders would order trusses for pole barns. 40 years of experience has taught me they were right (post frame builders).

Having personally erected a plethora of buildings, both stick frame and post frame, it is far less time consuming to erect a post frame building with widely spaced trusses (and purlins and ceiling joists) than it is to stud wall frame. With a minor investment into building a set of four ‘winch boxes’ entire sections of roof framing can be assembled on the ground and cranked up into place. Not only is this fast, it is also far safer.

Learn about winch boxes here: https://www.hansenpolebuildings.com/2019/10/winch-boxes-a-post-frame-miracle/

Mindi’s quote does not include OSB sheathing or either 30# felt or ice and water shield to go between OSB and roof steel. These can be added, however there is really no structural reason to do so – it is going to add to both investment and labor. Should you opt to have your roof sheathed, OSB (or plywood) will run from fascia to ridge across purlins 24″ on center, so spans would be no greater than trusses every two feet.

If you do opt for roof sheeting, you might want to consider going to 5/8″ CDX plywood and a standing seam steel. It will be more expensive however it does eliminate any through fasteners.

When you create an encapsulated building (spray foam to all interior surfaces), you do not want to ventilate it, as you would then lose your air seal. With your OSB’s underside sealed by closed cell spray foam and upper side protected with 30# felt or ice and water shield, there is no way for your OSB to become moist. If this is still a concern, an upgrade to plywood could be done.

Certainly one could place scissor trusses every two feet – it would then require adding structural headers (truss carriers) between columns to support them – reducing ‘line of sight’ beneath them. In order to place two foot tall windows in your knee walls above wing roofs, your building height would need to increase to allow for their height. This entails a whole bunch of connections – trusses to headers, headers to trusses and connections are always a weak link of any structural system. It would also mean having to add 2×4 flat on top of either trusses or sheathing in order to have something to screw roof steel panels to (you cannot screw directly to OSB only). Single trusses also require added bracing not required with ganged (two ply) trusses.

You will find drywall installs far better over horizontal framing (wall girts) https://www.hansenpolebuildings.com/2019/09/11-reasons-post-frame-commercial-girted-walls-are-best-for-drywall/. By utilizing bookshelf girts your exterior walls only have to be framed one time – saving materials and labor over stud walls with horizontal nailers. Building Codes also do not allow for studwalls over 12′ tall, requiring added engineering.

We do have sample building plans available on our website for your builder to review and get a feel for https://www.hansenpolebuildings.com/sample-building-plans/. You may also want to invest (in advance) in our Construction Manual (please contact Bonnie@HansenPoleBuildings.com) – you do get one included with your building purchase (plus you have access to an electronic version through your login).

Please keep in mind – not only have I been involved in design, provision and/or construction of roughly 20,000 post frame buildings, I also happen to live in one. As technology brings about better design solutions, we have always been quick to adopt them, as our goal is to provide structurally sound buildings where benefits outweigh investments.

Feel free to have your builder reach out to me directly at any time.

Steel Roofing and Siding Over Purlins

There is just plain a lot of bad (and scary) information floating around out there on the internet. For whatever reason, people will believe a random unqualified answer from a stranger, rather than going to a highly educated expert (e.g. Registered Professional Engineer).

Reader DYLAN in BEDFORD writes:

“I am building a 50×60 using 2×6 stud frame walls. Trusses 4’OC. The garage area (30×60) will have around 12’ceiling. The living area (20×60) will go back and stick build ceiling rafters 2’OC to make 8’ceilings. 12’ ceiling on the living area is just more to heat and cool – not necessary. My builder right now plans on putting 2×4 purlins and 2×4 girts on roof and side walls. Then wrap the whole thing with tyvek and out metal on. 

My question starts with is this ok? 

Should I consider plywood/osb on the roof or walls in lieu of 2×4 purlins/girts?

Are 4’oc trusses ok if I am going back to the living area and building ceilings 2’oc?

Are 2’oc rafters ok assuming I finish the ceiling with 5/8” drywall or wood tongue groove or similar?

I will probably spray foam insulation in the living area. This should help with noise during rain on the metal roof.”

Mike the Pole Barn Guru responds:

My recommendation would have been for you to erect a fully engineered post frame building, rather than spending tens of thousands of extra dollars in an attempt to make a stick framed house look like a pole building.

Ultimately how your building is assembled structurally should be up to whatever engineer you (or your builder) hire to provide your home’s engineered plans. Building Codes do not allow for stick framed walls taller than 11’7″ without engineering, so you should be there already.

Steel panels should not ever be screwed into OSB only and even plywood only would only be on roofs if you are using a standing seam (concealed fastener) steel. I (and most likely your engineer) will specify 2×4 or even 2×6 girts and/or purlins in order to provide a proper surface to screw steel panels to. Your trusses every four feet may be adequate in your living area, it will depend upon how your engineer designs structural attachment of your furred down ceiling, as well as weight supported by it. Rafters 24 inches on center will provide sufficient support for 5/8″ drywall.

You should not place Tyvek between roof framing and roof steel – as Weather Resistant Barriers (WRB) allow moisture to pass through. This could allow condensation to be trapped between your home’s WRB and roof steel, causing premature deterioration.

Ganged Wood Trusses & Closed Cell Spray Foam Post Frame Condensation Control

Ganged Wood Trusses and Closed Cell Spray Foam Post Frame Condensation Control

Ganged wood trusses are most usually two individually fabricated metal connector plated roof trusses, fastened together with either nails or even better Simpson Drive Screws (https://www.hansenpolebuildings.com/2017/03/simpson-drive-screws/), so they work together as a conjoined pair.

True doubled trusses (not two single trusses spaced apart by blocking) afford many structural advantages (https://www.hansenpolebuildings.com/2018/09/true-double-trusses/). However if closed cell spray foam is being used to control condensation underneath steel roofing, a little extra prevention is worth a pound (or two) of cure.

Most often conditioned post frame buildings are designed around having a flat (or slightly sloped using scissor trusses) ceiling. Warm moist air from this conditioned space rises into building’s attic and hopefully has a place to go. Most generally best design solution involves venting this dead attic space. Appropriate amounts of air intake provided by eave soffit vents and air exhaust utilizing a vented ridge will eliminate most moisture.

As those of us who did not nap during science classes are aware – warm air rises. Some of this warm air will get trapped below roof purlins or other attic framing members and not exhaust as imagined.

There are many methods of controlling or eliminating this warm and moist air from coming into contact with cooler roof steel. Least expensive (although potentially labor intensive if windy) would be a reflective radiant barrier (https://www.hansenpolebuildings.com/2017/05/effective-reflective-insulation/). One step up in investment, but very easily installed, would be an Integral Condensation Control (https://www.hansenpolebuildings.com/2017/03/integral-condensation-control/).

Some folks opt to sheath over trusses and roof purlins with OSB (Oriented Strand Board) or plywood, with 30# asphalt impregnated paper (roofing felt) placed between sheathing and roof steel. This can tend to run up one’s investment, as not only will more material and labor be directly involved, but trusses also must be appropriately designed for added weight carrying ability.

Enter closed cell spray foam. Long time readers have grown tired of me solving condensation challenges by people who did participate in one of these solutions and are now faced with a drip-drip-drip. Two inches of closed cell spray foam applied beneath a steel roof between purlins and trusses will create an almost entirely effective thermal break and take care of nearly all condensation issues.

Except…..
Metal connector plates trusses have pressed steel plates on each side. These plates project slightly from lumber faces and when two trusses are joined together, some gaps will occur between them. Gaps wide enough to allow for a significant flow of warm moist air to reach your roof steel, condense and start wreaking havoc.

There is, however, a simple fix, easily done during building framing. Before conjoining two or more trusses, place enough urethane or acoustic caulking between top cords to provide a complete air seal when in service!

Truss Spacing for Shingled Roofs

Roof truss spacing seems to be a topic with no consensus. Most Americans live in traditional stick framed houses, apartments or condominiums, where roof trusses (if they were utilized, rather than using dimensional lumber rafters) are most typically spaced every two feet.

Reader CHARLIE writes:

“Dear Hansen Pole Buildings, May I ask how far apart was the Truss placement in your “Re-roofing with Shingles” article? 

https://www.hansenpolebuildings.com/2012/01/re-roofing-with-shingles/

I’m considering a 24’x 36’ pole barn for a recording studio build but would need asphalt shingle type roof. I’m concerned that a suitable design would need additional rafters to meet the 7 lb/sq ft load requirement.

Most designs I have seen are showing the trusses 4’ OC. 

Respectfully, Charlie”

Mike the Pole Barn Guru writes:
In this particular article roof trusses were actually spaced with a pair every 12 feet – directly aligned with sidewall columns. This style of post frame construction affords several advantages:

Fewer holes to dig. There is nothing more deflating than getting down to digging one or two last column (pole) holes and hitting a rock larger than a Volkswagon Beetle! Minimization of holes to be dug reduces chances of underground surprises.

No need for truss carriers (structural headers) between columns in order to support trusses. Structural failures are almost always due to connection issues. Truss carriers rarely have adequate fasteners from header to columns and trusses themselves are rarely anchored sufficiently to them.

By far my most read article of all time has been on pole barn truss spacing: https://www.hansenpolebuildings.com/2011/06/pole-barn-truss-spacing/.

Asphalt shingles need to be installed over asphalt impregnated paper (felt) or ice and snow shield, most usually over OSB (Oriented Strand Board) or plywood. Weak link of this system is spanning ability of this underlying sheathing.

In order to be within spanning capabilities of common sheathing, dimensional lumber roof purlins, on edge, were joist hung between truss pairs, every two feet.

When you order a post frame (pole barn) kit from Hansen Pole Buildings with asphalt shingles, we automatically have our engineers design for this added load, as well as reducing deflection criteria so you end up with a nice, smooth roof. We also take into consideration Building Code requirements to account for a future overlaid reroof (even “lifetime” shingles will not last anywhere near a lifetime).


Considering a shingled roof due to how long they are warranted? You might want to read this article first: https://www.hansenpolebuildings.com/2015/03/shingle-warranties/.