Tag Archives: prescriptive building requirements

Building Department Checklist 2020 Part II

Yesterday I covered seven of what I feel are 14 most important questions to ask your local building department.  This not only will smooth your way through permitting processes, but also ensures a solid and safe building structure.

Let’s talk about these last seven….

#8 What is accepted Allowable Soil Bearing Capacity?

This will be a value in psf (pounds per square foot). If in doubt, err to the side of caution. As a rough rule – easier soil to dig, weaker it will be in supporting a building. A new building will only be as solid as it’s foundation, and it’s foundation will be only as strong as soil it rests upon.

Some jurisdictions (most noticeably in California and Colorado) will require a soils (geotechnical) engineer to provide an engineered soil report, spelling out actual tested soil strength.  Other states may have requirements as well, so be sure to ask ahead of time.

#9  Is an engineered soils test required?

If so, get it done ahead of time.  Don’t wait. It’s easy to do and there are plenty of soil (geotechnical) engineers for hire.

#10 What is your Seismic Site Class (such as A, B, C, D, E or F)?

While rarely do potential seismic forces dictate design of a post frame building, there are instances where they can.  A high seismic potential, with high flat roof snow load and low wind load will be one case. Another case will be when you are considering a multiple story structure.

#11 Are wet-stamped engineer signed and sealed structural plans required to acquire a permit?

Some Building Department Officials will say no to this, yet during plans review process they request structural engineering calculations to prove design, or (worse yet) they make wholesale changes to plans, based upon how they think a post frame building should be constructed.

My recommendation – invest in fully engineered plans. It becomes an assurance a registered design professional has verified your building will meet Code mandated loading requirements. In some cases, insurance companies offer discounts for buildings designed by an engineer. It’s certainly worth asking your agent for one!

In some cases, Building Permits will be granted with only requiring engineer sealed truss drawings. We do not condone this practice, as it creates a false sense of security.

Are exterior finished (showing roofing and siding) elevations required with building plans? Will more than two sets of drawings be needed for permit submittal?

#12 Verify Building Risk Category.

Most buildings not frequently occupied by public (not a home, business or municipal building) represent a low hazard to human life in event of a failure and are ASCE (American Society of Civil Engineers) Category I. This information can be found by Building Officials in IBC Table 1604.5 (not to be confused with Use and Occupancy classifications from IBC Chapter 3).

#13 In areas with cold winters, what is your frost depth?

All building columns or foundations must extend below frost line or be adequately perimeter insulated to prevent heave. In some areas, frost depths are as great as 100 inches!

#14 Does the Building Department have any unusual Building Code interpretations, amendments or prescriptive requirements for non-engineered buildings which could affect this building?

If so, get a copy from your building department for us, or anyone else who might be considered to be a provider for your building project.

Even though “the Code is The Code”, there are a plethora of local folks who think they have better ways or better ideas than the world’s smartest structural minds, who have actually written these Codes. And once again, I can’t stress enough: build only from plans sealed by a Registered Design Professional (architect or engineer). It will make life easier all around when it comes to getting your permit, even if you have been told seals are “not required”.

No one inside or outside of a permit office wants a construction process to be any more difficult or challenging than necessary.  Being armed with correct information (after doing homework of course) will be a solid towards your successful building!

Prescriptive Structural Requirements for Post Frame Buildings

In a misguided effort to make things “easier” for potential building owners and builders, some Building Departments have prescriptive requirements for non-engineered pole buildings.

This means if someone walks in their Building Department’s door and wants to construct a post frame building, as long as the building owner (or builder) agrees to build to match these prescriptive requirements, they will be issued a structural permit. This is, of course, with a caveat of being able to meet requirements of other departments, such as Planning (https://www.hansenpolebuildings.com/2013/01/planning-department-3/).

WHY IS THIS BAD?
Doesn’t this save a lot of money, not having to pay an engineer?

No.
Prescriptive requirements are often based upon, “we have always done it this way”, rather than having a basis in sound fundamentals of structural design. Every three years a new Building Code version is published, sometimes with sweeping changes in structural design as better research and new technologies (and products) have become available. Many highly qualified design professionals, including engineers, are involved in Building Code revisions.

A classic example of this came when International Building Codes were first adopted in 2000. Prior Codes did not have deflection criteria for wall members in those cases where members did not support a rigid finish (like plaster or gypsum board). New Code limits deflection for all instances. In order to meet these new requirements, in many cases, pole building wall girts can no longer be installed “flat” on wall column exteriors.

Many times materials are included in prescriptive requirements doing nothing but causing more work for whoever is actually doing construction, as well as using unnecessary larger lumber members than what an engineer would have specified.

On occasion, these prescriptive requirements do not actually meet sound structural design! In my spare time, I have challenged more than one of these and gotten Building Departments to make changes, as their prescriptive requirements would have resulted in an under designed building.

Scarily….if you build to prescriptive requirements, and have a collapse, your Building Department is absolved from any structural liability!

THE SOLUTION

If a Building Department has PRESCRIPTIVE REQUIREMENTS for Post Frame Buildings – invest in an engineered building. It is less expensive to pay for engineering and it guarantees a building be designed to sound engineering practice and actually meet building code requirements. Your bonus is those sealed plans are your “insurance’ – your building’s engineer is now liable for both safety and integrity of your new building as long as his or her plans are followed.

A Problem Good Structural Engineering Could Solve Part I

This is copied, by permission, from a blog post by Aaron Halberg, P.E. Aaron is a member of the NFBA (National Frame Building Association) Technical and Research committee.

(In one of the many discussions following the rash of building collapses experienced throughout the Midwest this winter, I received a copy of the email below from Dr. David Bohnhoff, PhD, P.E., Emeritus Professor at the University of Wisconsin – Madison. I reprint it here with the other names removed and with Dr. Bohnhoff’s permission in hopes that his message will reach a wider audience)

“I’m responding to your email and copying a few others on it as I feel the need to get some talking points out in the general public.

For starters the State of WI Uniform Dwelling Code (SPS Chapters 320-325) has absolutely nothing to do with agricultural buildings.  It is a PRESCRIPTIVE code that is only applicable to small buildings.  This would be buildings, for example, whose clearspans seldom exceed 20 or 30 feet.

Larger buildings are structurally engineered in accordance with the governing commercial building code.  In the State of WI, this is a slightly modified version of the International Building Code (IBC) and is referred to as the WI Commercial Building Code (SPS Chapters 361-366).  From a structural design perspective, the IBC is a PERFORMANCE code and it contains verbiage specific to agricultural buildings.  For what could be argued as antiquated (historic) reasoning (more on this later), the State of WI exempts (via SPS 361.02(3)(e))) farm buildings from all provisions of the WI Commercial Building Code.

For reasons (sometimes sheer ignorance) there are a number of builders who believe you can build large buildings in accordance with a PRESCRIPTIVE code for small buildings.

Prescriptive codes are codes that PRESCRIBE exactly what size/grade/shape components to use at various locations and how to connect them.  Prescriptive codes are very limited in their overall applicability.  Prescriptive codes “get by with” using simple, uniformly-distributed loads (e.g., a balanced snow load) to determine component size.  Structural engineers are seldom required when prescriptive codes are in play (and that’s one of the main reasons they exist).

When buildings get large, structural engineering gets more complex.  Most loads are far from being nice and uniform.  Wind and snow patterns are highly variant and quite complex.  When you add in parapets, cupolas, ridge vents, asymmetric roofs, steep roofs, intersecting roofs and associated valleys, overshot ridges, and sudden changes in roof height, AND you combine these with snow that can be blown in any direction, THEN (simply put) you have pages and pages of calculations you better perform if you want both an efficient and safe building.  Calculation of loads and load combinations is the first step in the structural design of a building, and not only are these loads dependent on the size and shape of the building you are designing, but they are also dependent on adjacent structures and terrain.  In many areas of the county, seismic loads are a big part of the equation, and obviously add significantly to the work involved in structural design.

Once the engineer has his loads, he/she begins the process of sizing components AND CONNECTIONS to resist these loads.  To design an efficient structure (in order to keep cost down), the engineer is constantly figuring out (1) ways in which secondary structural components and cladding can best be used to reduce the size of primarily structural components, and (2) ways that components can be connected to reduce component and connection stresses.  This takes both knowledge and experience.  A couple hallmarks of buildings that lack structural engineering are primary framing components that have little or no resistance to buckling, and mechanical connections that have little or no strength because fasteners have been inappropriately sized, spaced and/or located (with respect wood connections, fasteners often induce high wood stresses because they are too close together, too close to the end of a component, too close to the edge of a member, or otherwise used in a manner that induces high tension stress perpendicular-to-grain).

Come back tomorrow as Dr. Bohnhoff continues his discussion of reasons post frame buildings fail due to higher than “normal” snow loads in Part II of a three part series.

You Can’t Build a Post Frame Building Here

Author’s Note: This is part 5 of a series of blogs written from a 6500+ motorcycle trip from WA to Ohio and back.  See Blog from Oct. 15th for the beginning…and hang on for the ride!

Still in Wisconsin and I get into a discussion with a former builder. He tries to tell me the City of X will not allow pole buildings to be constructed within the city limits.

Welcome to WisconsinI reserve the right to not disclose the name of the city, as this is the not the first time it has happened – in states other than Wisconsin.  It doesn’t happen often, but when it does…I am all over this one!

Now this happens to be one of my favorite subjects.  If I believed in past lives, maybe I was an attorney in one of them, because I get all too excited about the prospect of winning this argument.

Here is the basic Email I have used to sway Planning Departments (anyone is welcome to borrow this – or contact me and I will fight your battle):

“Post frame (pole) buildings are Code conforming buildings and the methodology for their structural design is outlined and/or referenced in every edition of the International Building Codes.

It is within the legal scope of a Planning Department or Commission (after following whatever processes are in place for public notifications, etc.) to be able to place limitations on the size of structures, their placement on a given property, as well as the appearance (e.g. restrictions on type and or color of siding and roofing materials). Any appearance restrictions must be applied uniformly to any Code conforming structural system.

In order to legally preclude the use of post frame construction (or of any other Code conforming structural system), the onus would be upon the jurisdiction to somehow prove their structural inadequacy. It would be both arbitrary and capricious to deny the utilization of post frame construction, which could easily leave open the door to a plethora of probably indefensible lawsuits – resulting in undue costs to the jurisdiction, as well as the taxpayers.

While I am not an attorney, nor profess to offer legal advice, I have been involved in similar circumstances with other jurisdictions, each of which has made the determination to NOT LIMIT the use of post frame buildings as a structural system. I would encourage the same decision in your jurisdiction.”

I first innocently emailed the City of X Building & Zoning Administrator:

“What restrictions would be placed upon post frame construction within the City?”

 I have to admit, I was almost saddened when the response was:

 It must meet all standards of the Wisconsin Uniform Dwelling Code”.

In the end, a win for post frame counts as one in the “W” column, no matter how it was done.