Tag Archives: wood floor trusses

Basic Stats for Post Frame Home Floor Plans

Basic Stats for Post Frame Home Floor Plans

If there is a single commonality among us humans it is this – we are dimensionally challenged. This situation is even more so crucial when it comes to planning your new post frame home.

Here are a few tips to help you out:

EAVE HEIGHT

Measure from the pressure treated splash plank bottom, to intersection roofing underside at sidewall columns. This is not to be confused with ceiling height (also known as interior clear height).

HOW TO GET AN EIGHT FOOT FINISHED CEILING

For discussion’s sake (and as most post frame homes are concrete slab on grade), set a “zero point” at exterior grade (pressure treated splash plank bottom), slab top will be at +3.5 inches.

To create eight foot finished ceilings requires 8’ 1-1/8” (allows for 5/8” sheetrock on ceilings). This puts us at 8’ 4-5/8”.

Now allow for roof system thickness. With recessed (joist hung between trusses) roof purlins, 6-1/16″ for truss heel height with 2×6 top chord at 4/12 slope (provided you are using closed cell spray foam insulation between purlins).  Minimum eave height would then be 8’ 10-11/16”. If using blown-in insulation truss heel height should be insulation R value divided by 3 plus 2″ to allow plenty of eave to ridge air flow above insulation.

What about two floors?

In order to be able to run utilities (e.g. plumbing and ductwork) through second floor supports, I highly recommend 4” x 2” prefabricated wood floor trusses. Generally truss depth will be about an inch for every clear span foot with a 12 inch minimum.  Adding an arbitrarily chosen 16” deep floor truss and 8’ ceiling on second floor to example in previous paragraph puts eave height at 18’ 4-9/16”.

Stairs challenge even many experienced builders. Finished width must be no less than three feet (if planning allows, four feet is so much nicer), allow for drywall on each side when determining interior framing of stair opening width. In most jurisdictions maximum tread rise is 7-3/4” and minimum run is 10”. In above example, second floor top is 9’ 5-7/8”, so stairs would need at least 14 treads, taking up at least 140” (11’ 8”) horizontally. At stair top and bottom a space, in travel direction, equal to stair width must be provided. Headroom along every point of finished stairs must be no less than 6’8”.

ALLOW FOR WALL THICKNESS

Different providers measure their building footprints differently – some use wall girt outside at ‘call out’ while others use column outside and are three inches greater in width and length, this will need to be accounted for in room dimensions.

Exterior walls with bookshelf girts will be wall column thickness plus 1-1/2” for girts protruding outside of columns. With 3 or 4 ply 2×6 glulams or 6×6 columns allow 7-1/4” plus interior sheetrock thickness. Interior 2×4 walls with ½” sheetrock on each side end up 4-1/2” thick.

APPROPRIATELY SIZE SPACES

Below are popular post frame home rooms and their average square footage, in three categories (listed as small/medium/large):

Entry Foyer (65/89/138)
Kitchen (193/275/423)
Walk-In Kitchen Pantry (17/31/51)
Great Room (487/481/680)
Dining (148/196/281)
Living (256/319/393)
Family (311/355/503)
Recreation (216/384/540)
Entertainment/Media (140/192/280)
Master Bedroom (231/271/411)
Master Bathroom (115/144/210)
Secondary Bedrooms (130/139/178)
Other Bathrooms (93/146/313)
Laundry (67/87/145)
Utility/Mud Room (30/48/80)

Always allow adequate space for hallways (same minimum width rules apply as stairs).

Imagining a Retirement Barndominium

Let us face it – I am among those greying in America. According to United States demographic statistics 14.7% of us (over 41 million) have reached a 62 year-old milestone!

What are we looking forward to in our probably final home of our own? We want to be able to spend our time enjoying life, rather than being slaves to home upkeep.

Loyal reader RUSS in PIPERSVILLE writes:

“We are currently in the “imagining” phase of our retirement home. We hope to be building in Maryland very close to the Chesapeake Bay.

We are trying to plan it as an aging in place home. The building will have the top of floor at 4ft. so as to accommodate the recorded last worst flood tide of 11 feet on the bay. Building dimensions are approx. 30 x 60 with a 9ft interior ceiling height. Do you favor engineered floor joists over dimensional lumber and why?

Planning to use Roxul insulation in the walls for R-30. A 2×8 bookshelf girt is 7.25 in. the same as the insulation batts. Can the insulation be place directly
against steel siding if we choose that system?

Also pretty sure that we will be specifying raised heel trusses for the roof. Can the steel siding accommodate the shear requirements for the trusses and an upgrade of wind load specs, or would something like tall wall or storm side sheathing become more practical? 

I am convinced that you folks are the only company that we will trust with the design and supply of our home. Your blog and learning posts have been an incredible help in this process. Without the information that you folks publish we probably would have made a serious mistake in looking elsewhere for this.”


Mike the Pole Barn Guru says:
Thank you very much Russ for your kind words, they are appreciated.

My thoughts:

I would consider setting underside of my floor framing to be above the highest recorded flood tide and probably give it an extra six inches. As the floor is being elevated, might as well make sure it is never going to be an issue.

I’d look at 10′ ceilings, as well as 9′. You are going to be designing for energy efficiency so heating/cooling differences should be minimal and those 10 foot ceilings are sure nice. Makes everything feel so much more spacious.

About Hansen BuildingsMy preference is engineered prefabricated wood floor trusses. To me, I joists always feel spongy. Dimensional lumber varies greatly in both height dimension as well as stiffness of each piece leading to a feeling of lots of ups and downs as you walk across a floor. Both of the last two make running duct work and plumbing within floor cavity near impossible – leaving things having to hang below the floor’s finished underside.

You can place Roxul directly against wall steel inside, however I would use a Weather Resistant Barrier if going this direction. Me personally, I would flash spray two inches of closed cell foam to wall steel inside and then use 5-1/2 inch batts. Closed cell spray foam completely seals your walls and adds rigidity. You would end up with roughly R-37 walls.

Because your trusses are connected directly to sidewall columns, raised truss heels do not create a greater shear load for sidewall steel.

Try to plan your interior spaces to best fit your needs, rather than to try to fit your needs inside into a preconceived exterior box, a difference of a few cents per square foot is not worth the sacrifice of a needed space. Maximize southern windows and minimize or eliminate north facing ones. Plan southern roof overhangs to shield windows from summer sun. 

I appreciate your well thought out questions and looking forward to being with you on your continued journey.